268 research outputs found

    Performance Analysis of OpenAirInterface System Emulation

    Get PDF
    With the rapid growth of mobile networks, the radio access network becomes more and more costly to deploy, operate, maintain and upgrade. The most effective answer to this problem lies in the centralization and virtualization of the eNodeBs. This solution is known as Cloud RAN and is one of the key topics in the development of fifth generation networks. Within this context OpenAirInterface is a promising emulation tool that can be used for prototyping innovative scheduling algorithms, making the most of the new architecture. In this work we first describe the emulation environment of OpenAirInterface and its scheduling framework and we use it to implement two MAC schedulers. Moreover we validate the above schedulers and we perform a thorough profiling of OpenAirInterface, in terms of both memory occupancy and execution time. Our results show that OpenAirInterface can be effectively used for prototyping scheduling algorithms in emulated LTE networks

    Software defined wireless network (sdwn) for industrial environment: case of underground mine

    Get PDF
    Avec le développement continu des industries minières canadiennes, l’établissement des réseaux de communications souterrains avancés et sans fil est devenu un élément essentiel du processus industriel minier et ceci pour améliorer la productivité et assurer la communication entre les mineurs. Cette étude vise à proposer un système de communication minier en procurant une architecture SDWN (Software Defined Wireless Network) basée sur la technologie de communication LTE. Dans cette étude, les plateformes les plus importantes de réseau mobile 4G ont été étudiées, configurées et testées dans deux zones différentes : un tunnel de mine souterrain et un couloir intérieur étroit. Également, une architecture mobile combinant SDWN et NFV (Network Functions Virtualization) a été réalisée

    Contributions to Vehicular Communications Systems and Schemes

    Get PDF
    La dernière décennie a marqué une grande hausse des applications véhiculaires comme une nouvelle source de revenus et un facteur de distinction dans l'industrie des véhicules. Ces applications véhiculaires sont classées en deux groupes : les applications de sécurité et les applications d'info divertissement. Le premier groupe inclue le changement intelligent de voie, l'avertissement de dangers de routes et la prévention coopérative de collision qui comprend la vidéo sur demande (VoD), la diffusion en direct, la diffusion de météo et de nouvelles et les jeux interactifs. Cependant, Il est à noter que d'une part, les applications véhiculaires d'info divertissement nécessitent une bande passante élevée et une latence relativement faible ; D'autre part, les applications de sécurité requièrent exigent un délai de bout en bout très bas et un canal de communication fiable pour la livraison des messages d'urgence. Pour satisfaire le besoin en applications efficaces, les fabricants de véhicules ainsi que la communauté académique ont introduit plusieurs applications à l’intérieur de véhicule et entre véhicule et véhicule (V2V). Sauf que, l'infrastructure du réseau sans fil n'a pas été conçue pour gérer les applications de véhicules, en raison de la haute mobilité des véhicules, de l'imprévisibilité du comportement des conducteurs et des modèles de trafic dynamiques. La relève est l'un des principaux défis des réseaux de véhicules, car la haute mobilité exige au réseau sans fil de faire la relève en un très court temps. De plus, l'imprévisibilité du comportement du conducteur cause l'échec des protocoles proactifs traditionnels de relève, car la prédiction du prochain routeur peut changer en fonction de la décision du conducteur. Aussi, le réseau de véhicules peut subir une mauvaise qualité de service dans les régions de relève en raison d'obstacles naturels, de véhicules de grande taille ou de mauvaises conditions météorologiques. Cette thèse se concentre sur la relève dans l'environnement des véhicules et son effet sur les applications véhiculaires. Nous proposons des solutions pratiques pour les réseaux actuellement déployés, principalement les réseaux LTE, l'infrastructure véhicule à véhicule (V2V) ainsi que les outils efficaces d’émulateurs de relèves dans les réseaux véhiculaires.----------ABSTRACT: The last decade marked the rise of vehicular applications as a new source of revenue and a key differentiator in the vehicular industry. Vehicular Applications are classified into safety and infotainment applications. The former include smart lane change, road hazard warning, and cooperative collision avoidance; however, the latter include Video on Demand (VoD), live streaming, weather and news broadcast, and interactive games. On one hand, infotainment vehicular applications require high bandwidth and relatively low latency; on the other hand, safety applications requires a very low end to end delay and a reliable communication channel to deliver emergency messages. To satisfy the thirst for practical applications, vehicle manufacturers along with research institutes introduced several in-vehicle and Vehicle to Vehicle (V2V) applications. However, the wireless network infrastructure was not designed to handle vehicular applications, due to the high mobility of vehicles, unpredictability of drivers’ behavior, and dynamic traffic patterns. Handoff is one of the main challenges of vehicular networks since the high mobility puts pressure on the wireless network to finish the handoff within a short period. Moreover, the unpredictability of driver behavior causes the traditional proactive handoff protocols to fail, since the prediction of the next router may change based on the driver’s decision. Moreover, the vehicular network may suffer from bad Quality of Service (QoS) in the regions of handoff due to natural obstacles, large vehicles, or weather conditions. This thesis focuses on the handoff on the vehicular environment and its effect on the vehicular applications. We consider practical solutions for the currently deployed networks mainly Long Term Evolution (LTE) networks, the Vehicle to Vehicle (V2V) infrastructure, and the tools that can be used effectively to emulate handoff on the vehicular networks

    Open Platforms for Connected Vehicles

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Comunicaciones MĂłviles de MisiĂłn CrĂ­tica sobre Redes LTE

    Get PDF
    Mission Critical Communications (MCC) have been typically provided by proprietary radio technologies, but, in the last years, the interest to use commercial-off-the-shelf mobile technologies has increased. In this thesis, we explore the use of LTE to support MCC. We analyse the feasibility of LTE networks employing an experimental platform, PerformNetworks. To do so, we extend the testbed to increase the number of possible scenarios and the tooling available. After exploring the Key Performance Indicators (KPIs) of LTE, we propose different architectures to support the performance and functional requirements demanded by MCC. We have identified latency as one of the KPI to improve, so we have done several proposals to reduce it. These proposals follow the Mobile Edge Computing (MEC) paradigm, locating the services in what we called the fog, close to the base station to avoid the backhaul and transport networks. Our first proposal is the Fog Gateway, which is a MEC solution fully compatible with standard LTE networks that analyses the traffic coming from the base station to decide whether it has to be routed to the fog of processed normally by the SGW. Our second proposal is its natural evolution, the GTP Gateway that requires modifications on the base station. With this proposal, the base station will only transport over GTP the traffic not going to the fog. Both proposals have been validated by providing emulated scenarios, and, in the case of the Fog Gateway, also with the implementation of different prototypes, proving its compatibility with standard LTE network and its performance. The gateways can reduce drastically the end-to-end latency, as they avoid the time consumed by the backhaul and transport networks, with a very low trade-off

    Building the Future Internet through FIRE

    Get PDF
    The Internet as we know it today is the result of a continuous activity for improving network communications, end user services, computational processes and also information technology infrastructures. The Internet has become a critical infrastructure for the human-being by offering complex networking services and end-user applications that all together have transformed all aspects, mainly economical, of our lives. Recently, with the advent of new paradigms and the progress in wireless technology, sensor networks and information systems and also the inexorable shift towards everything connected paradigm, first as known as the Internet of Things and lately envisioning into the Internet of Everything, a data-driven society has been created. In a data-driven society, productivity, knowledge, and experience are dependent on increasingly open, dynamic, interdependent and complex Internet services. The challenge for the Internet of the Future design is to build robust enabling technologies, implement and deploy adaptive systems, to create business opportunities considering increasing uncertainties and emergent systemic behaviors where humans and machines seamlessly cooperate
    • …
    corecore