130 research outputs found

    On Efficiency of ARQ and HARQ Entities Interaction in WiMAX Networks

    Get PDF
    Space scienc

    Performance Analysis of ARQ Mechanism in WiMAX Networks

    Get PDF
    WiMAX (Worldwide Interoperability for MicrowaveAccess) is the IEEE 802.16 standards-based wireless technology, provides Broadband Wireless Access (BWA) for Metropolitan Area Networks (MAN). The Automatic Repeat reQuest (ARQ) mechanism in WiMAX uses a feedback channel for the confirmation of error-free packet delivery or for packet retransmission request. This method can increase network throughput when radio channel condition is worse. In this paper attempt has been made to study the effect of implementation of ARQ on the performance of WiMAX network through simulation. Simulation study has been carried out for WiMAX network with and without enabling ARQ. The performance is been compared by considering the performance metrics like throughput, delay and jitter

    Performance enhancements in next generation wireless networks using network coding : a case study in WiMAX

    Get PDF
    Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2012.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Cataloged from student-submitted PDF version of thesis.Includes bibliographical references (p. 125-130).In this thesis, we design and implement a network-coding-enhanced network architecture for next generation wireless networks. The architecture applies intra-session random linear network coding as a packet erasure code below the IP layer. Using WiMAX as a case study, a series of point-to-point single-interface experiments are conducted to compare the performance of the architecture to that of HARQ and ARQ mechanisms. The performance measures are packet loss percentage, throughput and file transfer delay. The experiments use the Global Environment for Network Innovations (GENI) WiMAX platforms. UDP traffic considered; Iperf and UDP based File Transfer Protocol (UFTP) are used as measurement applications. The proposed architecture substantially decreases packet loss percentage from around 11-32% to nearly 0%. Compared to HARQ and ARQ mechanisms, the architecture can offer up to 5.9 times gain in throughput and 5.5 times reduction in end-to-end fi le transfer delay.by Surat Teerapittayanon.M.Eng

    Security-centric analysis and performance investigation of IEEE 802.16 WiMAX

    Get PDF
    fi=vertaisarvioitu|en=peerReviewed

    Average age of information with hybrid ARQ under a resource constraint

    Get PDF
    Scheduling the transmission of status updates over an error-prone communication channel is studied in order to minimize the long-term average age of information (AoI) at the destination under a constraint on the average number of transmissions at the source node. After each transmission, the source receives an instantaneous ACK/NACK feedback, and decides on the next update without prior knowledge on the success of future transmissions. First, the optimal scheduling policy is studied under different feedback mechanisms when the channel statistics are known; in particular, the standard automatic repeat request (ARQ) and hybrid ARQ (HARQ) protocols are considered. Then, for an unknown environment, an average-cost reinforcement learning (RL) algorithm is proposed that learns the system parameters and the transmission policy in real time. The effectiveness of the proposed methods are verified through numerical simulations

    Future Trends and Challenges for Mobile and Convergent Networks

    Get PDF
    Some traffic characteristics like real-time, location-based, and community-inspired, as well as the exponential increase on the data traffic in mobile networks, are challenging the academia and standardization communities to manage these networks in completely novel and intelligent ways, otherwise, current network infrastructures can not offer a connection service with an acceptable quality for both emergent traffic demand and application requisites. In this way, a very relevant research problem that needs to be addressed is how a heterogeneous wireless access infrastructure should be controlled to offer a network access with a proper level of quality for diverse flows ending at multi-mode devices in mobile scenarios. The current chapter reviews recent research and standardization work developed under the most used wireless access technologies and mobile access proposals. It comprehensively outlines the impact on the deployment of those technologies in future networking environments, not only on the network performance but also in how the most important requirements of several relevant players, such as, content providers, network operators, and users/terminals can be addressed. Finally, the chapter concludes referring the most notable aspects in how the environment of future networks are expected to evolve like technology convergence, service convergence, terminal convergence, market convergence, environmental awareness, energy-efficiency, self-organized and intelligent infrastructure, as well as the most important functional requisites to be addressed through that infrastructure such as flow mobility, data offloading, load balancing and vertical multihoming.Comment: In book 4G & Beyond: The Convergence of Networks, Devices and Services, Nova Science Publishers, 201

    Quality of service and resource management in IP and wireless networks

    Get PDF
    A common theme in the publications included in this thesis is the quality of service and resource management in IP and wireless networks. This thesis presents novel algorithms and implementations for admission control in IP and IEEE 802.16e networks, active queue management in EGPRS, WCDMA, and IEEE 802.16e networks, and scheduling in IEEE 802.16e networks. The performance of different algorithms and mechanisms is compared with the prior art through extensive ns-2 simulations. We show that similar active queue management mechanisms, such as TTLRED, can be successfully used to reduce the downlink delay (and in some cases even improve the TCP goodput) in different bottlenecks of IP, EGPRS, WCDMA, and IEEE 802.16e access networks. Moreover, almost identical connection admission control algorithms can be applied both in IP access networks and at IEEE 802.16e base stations. In the former case, one just has to first gather the link load information from the IP routers. We also note that DiffServ can be used to avoid costly overprovisioning of the backhaul in IEEE 802.16e networks. We present a simple mapping between IEEE 802.16e data delivery services and DiffServ traffic classes, and we propose that IEEE 802.16e base stations should take the backhaul traffic load into account in their admission control decisions. Moreover, different IEEE 802.16e base station scheduling algorithms and uplink channel access mechanisms are studied. In the former study, we show that proportional fair scheduling offers superior spectral efficiency when compared to deficit round-robin, though in some cases at the cost of increased delay. Additionally, we introduce a variant of deficit round-robin (WDRR), where the quantum value depends on the modulation and coding scheme. We also show that there are several ways to implement ertPS in an efficient manner, so that during the silence periods of a VoIP call no uplink slots are granted. The problem here, however, is how to implement the resumption after the silence period while introducing as little delay as possible

    4G Technology Features and Evolution towards IMT-Advanced

    Get PDF
    Kiinteiden- ja mobiilipalveluiden kysyntä kasvaa nopeasti ympäri maailmaa. Älykkäiden päätelaitteiden, kuten iPhone:n ja Nokia N900:n markkinoilletulo yhdistettynä näiden korkeaan markkinapenetraatioon ja korkealuokkaiseen käyttäjäkokemukseen lisäävät entisestään palveluiden kysyntää ja luovat tarpeen jatkuvalle innovoinnille langattomien teknologioiden alalla tavoitteena lisäkapasiteetin ja paremman palvelunlaadun tarjoaminen. Termi 4G (4th Generation) viittaa tuleviin neljännen sukupolven mobiileihin langattomiin palveluihin, jotka International Telecommunications Union:in Radiocommunication Sector (ITU-R) on määritellyt ja nimennyt International Mobile Telecommunications-Advanced (IMT-Advanced). Nämä ovat järjestelmiä, jotka pitävät sisällään IMT:n ne uudet ominaisuudet, jotka ylittävät IMT-2000:n vaatimukset. Long Term Evolution-Advanced (LTE-Advanced) ja IEEE 802.16m ovat IMT-A sertifiointiin lähetetyt kaksi pääasiallista kandidaattiteknologiaa. Tässä diplomityössä esitellään kolmannen sukupolven järjestelmien kehityspolku LTE:hen ja IEEE 802.16e-2005 asti. Lisäksi työssä esitetään LTE-Advanced:n ja IEEE 802.16m:n uudet vaatimukset ja ominaisuudet sekä vertaillaan näiden lähestymistapoja IMT-A vaatimusten täyttämiseksi. Lopuksi työssä luodaan katsaus LTE ja IEEE 802.16e-2005 (markkinointinimeltään Mobile WiMAX) -järjestelmien markkinatilanteeseen.The demand for affordable bandwidth in fixed and mobile services is growing rapidly around the world. The emergence of smart devices like the iPhone and Nokia N900, coupled with their high market penetration and superior user experience is behind this increased demand, inevitably driving the need for continued innovations in the wireless data technologies industry to provide more capacity and higher quality of service. The term "4G" meaning the 4th Generation of wireless technology describes mobile wireless services which have been defined by the ITU's Radiocommunication Sector (ITU-R) and titled International Mobile Telecommunications-Advanced (IMT-Advanced). These are mobile systems that include the new capabilities of IMT that go beyond those of IMT-2000. Long Term Evolution-Advanced (LTE-Advanced) and IEEE 802.16m are the two main candidate technologies submitted for IMT-Advanced certification. This thesis reviews the technology roadmap up to and including current 3G systems LTE from the 3rd Generation Partnership Project (3GPP) and IEEE 802.16e-2005 from the Institute of Electrical and Electronics Engineers (IEEE). Furthermore, new requirements and features for LTE-Advanced and IEEE 802.16m as well as a comparative approach towards IMT-Advanced certification are presented. Finally, the thesis concludes with a discussion on the market status and deployment strategies of LTE and IEEE 802.16e-2005, or Mobile WiMAX as it is being marketed
    corecore