1,139 research outputs found

    Generalized Spatial Modulation in Indoor Wireless Visible Light Communication

    Full text link
    In this paper, we investigate the performance of generalized spatial modulation (GSM) in indoor wireless visible light communication (VLC) systems. GSM uses NtN_t light emitting diodes (LED), but activates only NaN_a of them at a given time. Spatial modulation and spatial multiplexing are special cases of GSM with Na=1N_{a}=1 and Na=NtN_{a}=N_t, respectively. We first derive an analytical upper bound on the bit error rate (BER) for maximum likelihood (ML) detection of GSM in VLC systems. Analysis and simulation results show that the derived upper bound is very tight at medium to high signal-to-noise ratios (SNR). The channel gains and channel correlations influence the GSM performance such that the best BER is achieved at an optimum LED spacing. Also, for a fixed transmission efficiency, the performance of GSM in VLC improves as the half-power semi-angle of the LEDs is decreased. We then compare the performance of GSM in VLC systems with those of other MIMO schemes such as spatial multiplexing (SMP), space shift keying (SSK), generalized space shift keying (GSSK), and spatial modulation (SM). Analysis and simulation results show that GSM in VLC outperforms the other considered MIMO schemes at moderate to high SNRs; for example, for 8 bits per channel use, GSM outperforms SMP and GSSK by about 21 dB, and SM by about 10 dB at 10−410^{-4} BER

    Optical Asymmetric Modulation for VLC Systems

    Get PDF
    The explosive growth of connected devices and the increasing number of broadband users have led to an unprecedented growth in traffic demand. To this effect, the next generation wireless systems are envisioned to meet this growth and offer a potential data rate of 10 Gbps or more. In this context, an attractive solution to the current spectrum crunch issue is to exploit the visible light spectrum for the realization of high-speed commutation systems. However, this requires solutions to certain challenges relating to visible light communications (VLC), such as the stringent requirements of VLC-based intensity modulation and direct detection (IM/DD), which require signals to be real and unipolar. The present work proposes a novel power-domain multiplexing based optical asymmetric modulation (OAM) scheme for indoor VLC systems, which is particularly adapted to transmit high-order modulation signals using linear real and unipolar constellations that fit into the restrictions of IM/DD systems. It is shown that the proposed scheme provides improved system performance that outperforms alternative modulation schemes, at no extra complexity

    Real‐Time Software‐Defined Adaptive MIMO Visible Light Communications

    Get PDF
    Visible light communications (VLC) based on light-emitting diodes (LEDs) merges lighting and data communications in applications of Internet-of-Things and 5G networks. However, phosphor-based white LED has a limited linear dynamic range and limited modulation bandwidth. In practical indoor mobile communications, complex channel conditions change dynamically in real-time, and line of sight (LOS) links may be blocked by obstructions. We propose a real-time software-defined adaptive multi-input multi-output (MIMO) VLC system, that both modulation formats (QPSK,16-QAM,64-QAM, 256QAM) and MIMO reconfigurations (Spatial Diversity and Spatial Multiplexing) are dynamically adapted to the changing channel conditions, for enhancing both link reliability and spectral efficiency. Real-time and software defined digital signal processing (DSP) are implemented by Field Programmable Gate Array (FPGA) based Universal Software Radio Peripheral (USRP) devices. We theoretically analysed and experimentally evaluated nonlinear electrical-optical properties and modulation characteristics of white LEDs. We demonstrated a real-time Single-Carrier 256-Quadrature Amplitude Modulation (QAM) 2×2 MIMO VLC, achieving 1.81% averaged error vector magnitude (EVM), 2×10-5 bit error rate (BER) after 2 m indoor transmission. As an obstacle moved across LOS links, real-time software-defined adaptive MIMO VLC system enhanced average error-free spectral efficiency of 12 b/s/Hz. This will provide high throughputs for robust links in mobile shadowing environments

    Spatial and wavelength division multiplexing for high-speed VLC systems: An overview

    Get PDF
    White light emitting diodes (LEDs) are becoming the primary source of illumination for the home and office environment. These LEDs can be intensity modulated to transmit high-speed data via an optical carrier. As a result, there is a paradigm shift in indoor wireless communication as the illumination infrastructure can be reused for data communications. It is widely expected that visible light communication (VLC) system will play a significant role in realizing the high-speed data communication envisaged for 5G connectivity. The goal of VLC systems is to provide a reliable and ubiquitous communication link that is an order of magnitude faster than current radio frequency (RF) links. In order to support the high data rates required for the current and future generations of communication systems, a number of techniques were explored for VLC by a number of research groups worldwide. This paper provides an overview of spatial and wavelength division multiplexing that has enabled multi-Gb/s transmission speeds in VLC using low bandwidth LEDs

    Optical Non-Orthogonal Multiple Access for Visible Light Communication

    Get PDF
    The proliferation of mobile Internet and connected devices, offering a variety of services at different levels of performance, represents a major challenge for the fifth generation wireless networks and beyond. This requires a paradigm shift towards the development of key enabling techniques for the next generation wireless networks. In this respect, visible light communication (VLC) has recently emerged as a new communication paradigm that is capable of providing ubiquitous connectivity by complementing radio frequency communications. One of the main challenges of VLC systems, however, is the low modulation bandwidth of the light-emitting-diodes, which is in the megahertz range. This article presents a promising technology, referred to as "optical- non-orthogonal multiple access (O-NOMA)", which is envisioned to address the key challenges in the next generation of wireless networks. We provide a detailed overview and analysis of the state-of-the-art integration of O-NOMA in VLC networks. Furthermore, we provide insights on the potential opportunities and challenges as well as some open research problems that are envisioned to pave the way for the future design and implementation of O-NOMA in VLC systems

    Performance analysis of MIMO techniques for a pyramid receiver in an indoor MIMO-VLC system

    Get PDF
    In an indoor multiple-input multiple-output (MIMO) visible light communication (VLC) system, line of sight (LoS) channel links are present between a light-emitting diode (LED) based transmitter and a photodetector (PD) based receiver. The PDs in the receiver are closely packed resulting in a high channel correlation. To overcome channel correlation and improve the performance of the MIMO-VLC system, angle diversity receivers (ADRs) are commonly employed. The channel matrix entries depend on the normal vectors of the PDs, which in turn depend on the elevation angle (EA) of the PDs. Thus, by having normal vectors pointing in different directions, the channel correlation can be considerably reduced. This paper considers a special type of ADR called pyramid receiver (PR) and employs a 4x4 MIMO-VLC system. In this paper, different MIMO algorithms such as repetition coding (RC) and spatial multiplexing (SMP) are considered to exhibit and compare the bit-error-rate (BER) performance of the fixed and variable EA MIMO-VLC systems. The results show that an SMP-employed MIMO-VLC system outperforms the RC-employed MIMO-VLC system. SMP results in an spatial multiplexing gain that varies linearly with the number of LEDs whereas RC does not yield any spatial multiplexing gain. To attain the same spectral efficiency i.e. 4 bit/s/Hz, a larger signal constellation size is required for RC employed MIMO-VLC system to achieve the same BER as of an SMP employed MIMO-VLC system. Similarly, the BER performance of variable EA MIMO-VLC systems is better as compared to fixed EA MIMO-VLC systems

    A review of gallium nitride LEDs for multi-gigabit-per-second visible light data communications

    Get PDF
    The field of visible light communications (VLC) has gained significant interest over the last decade, in both fibre and free-space embodiments. In fibre systems, the availability of low cost plastic optical fibre (POF) that is compatible with visible data communications has been a key enabler. In free-space applications, the availability of hundreds of THz of the unregulated spectrum makes VLC attractive for wireless communications. This paper provides an overview of the recent developments in VLC systems based on gallium nitride (GaN) light-emitting diodes (LEDs), covering aspects from sources to systems. The state-of-the-art technology enabling bandwidth of GaN LEDs in the range of >400 MHz is explored. Furthermore, advances in key technologies, including advanced modulation, equalisation, and multiplexing that have enabled free-space VLC data rates beyond 10 Gb/s are also outlined
    • 

    corecore