2,737 research outputs found

    Performance bounds for expander-based compressed sensing in Poisson noise

    Full text link
    This paper provides performance bounds for compressed sensing in the presence of Poisson noise using expander graphs. The Poisson noise model is appropriate for a variety of applications, including low-light imaging and digital streaming, where the signal-independent and/or bounded noise models used in the compressed sensing literature are no longer applicable. In this paper, we develop a novel sensing paradigm based on expander graphs and propose a MAP algorithm for recovering sparse or compressible signals from Poisson observations. The geometry of the expander graphs and the positivity of the corresponding sensing matrices play a crucial role in establishing the bounds on the signal reconstruction error of the proposed algorithm. We support our results with experimental demonstrations of reconstructing average packet arrival rates and instantaneous packet counts at a router in a communication network, where the arrivals of packets in each flow follow a Poisson process.Comment: revised version; accepted to IEEE Transactions on Signal Processin

    Performance bounds on compressed sensing with Poisson noise

    Get PDF
    This paper describes performance bounds for compressed sensing in the presence of Poisson noise when the underlying signal, a vector of Poisson intensities, is sparse or compressible (admits a sparse approximation). The signal-independent and bounded noise models used in the literature to analyze the performance of compressed sensing do not accurately model the effects of Poisson noise. However, Poisson noise is an appropriate noise model for a variety of applications, including low-light imaging, where sensing hardware is large or expensive, and limiting the number of measurements collected is important. In this paper, we describe how a feasible positivity-preserving sensing matrix can be constructed, and then analyze the performance of a compressed sensing reconstruction approach for Poisson data that minimizes an objective function consisting of a negative Poisson log likelihood term and a penalty term which could be used as a measure of signal sparsity.Comment: 5 pages; to appear in Proc. ISIT 200

    Compressed sensing performance bounds under Poisson noise

    Full text link
    This paper describes performance bounds for compressed sensing (CS) where the underlying sparse or compressible (sparsely approximable) signal is a vector of nonnegative intensities whose measurements are corrupted by Poisson noise. In this setting, standard CS techniques cannot be applied directly for several reasons. First, the usual signal-independent and/or bounded noise models do not apply to Poisson noise, which is non-additive and signal-dependent. Second, the CS matrices typically considered are not feasible in real optical systems because they do not adhere to important constraints, such as nonnegativity and photon flux preservation. Third, the typical 2\ell_2--1\ell_1 minimization leads to overfitting in the high-intensity regions and oversmoothing in the low-intensity areas. In this paper, we describe how a feasible positivity- and flux-preserving sensing matrix can be constructed, and then analyze the performance of a CS reconstruction approach for Poisson data that minimizes an objective function consisting of a negative Poisson log likelihood term and a penalty term which measures signal sparsity. We show that, as the overall intensity of the underlying signal increases, an upper bound on the reconstruction error decays at an appropriate rate (depending on the compressibility of the signal), but that for a fixed signal intensity, the signal-dependent part of the error bound actually grows with the number of measurements or sensors. This surprising fact is both proved theoretically and justified based on physical intuition.Comment: 12 pages, 3 pdf figures; accepted for publication in IEEE Transactions on Signal Processin

    Poisson Matrix Completion

    Full text link
    We extend the theory of matrix completion to the case where we make Poisson observations for a subset of entries of a low-rank matrix. We consider the (now) usual matrix recovery formulation through maximum likelihood with proper constraints on the matrix MM, and establish theoretical upper and lower bounds on the recovery error. Our bounds are nearly optimal up to a factor on the order of O(log(d1d2))\mathcal{O}(\log(d_1 d_2)). These bounds are obtained by adapting the arguments used for one-bit matrix completion \cite{davenport20121} (although these two problems are different in nature) and the adaptation requires new techniques exploiting properties of the Poisson likelihood function and tackling the difficulties posed by the locally sub-Gaussian characteristic of the Poisson distribution. Our results highlight a few important distinctions of Poisson matrix completion compared to the prior work in matrix completion including having to impose a minimum signal-to-noise requirement on each observed entry. We also develop an efficient iterative algorithm and demonstrate its good performance in recovering solar flare images.Comment: Submitted to IEEE for publicatio
    corecore