2,130 research outputs found

    Random Pilot and Data Access in Massive MIMO for Machine-type Communications

    Full text link
    A massive MIMO system, represented by a base station with hundreds of antennas, is capable of spatially multiplexing many devices and thus naturally suited to serve dense crowds of wireless devices in emerging applications, such as machine-type communications. Crowd scenarios pose new challenges in the pilot-based acquisition of channel state information and call for pilot access protocols that match the intermittent pattern of device activity. A joint pilot assignment and data transmission protocol based on random access is proposed in this paper for the uplink of a massive MIMO system. The protocol relies on the averaging across multiple transmission slots of the pilot collision events that result from the random access process. We derive new uplink sum rate expressions that take pilot collisions, intermittent device activity, and interference into account. Simplified bounds are obtained and used to optimize the device activation probability and pilot length. A performance analysis indicates how performance scales as a function of the number of antennas and the transmission slot duration

    Efficient Downlink Channel Reconstruction for FDD Multi-Antenna Systems

    Get PDF
    In this paper, we propose an efficient downlink channel reconstruction scheme for a frequency-division-duplex multi-antenna system by utilizing uplink channel state information combined with limited feedback. Based on the spatial reciprocity in a wireless channel, the downlink channel is reconstructed by using frequency-independent parameters. We first estimate the gains, delays, and angles during uplink sounding. The gains are then refined through downlink training and sent back to the base station (BS). With limited overhead, the refinement can substantially improve the accuracy of the downlink channel reconstruction. The BS can then reconstruct the downlink channel with the uplink-estimated delays and angles and the downlink-refined gains. We also introduce and extend the Newtonized orthogonal matching pursuit (NOMP) algorithm to detect the delays and gains in a multi-antenna multi-subcarrier condition. The results of our analysis show that the extended NOMP algorithm achieves high estimation accuracy. Simulations and over-the-air tests are performed to assess the performance of the efficient downlink channel reconstruction scheme. The results show that the reconstructed channel is close to the practical channel and that the accuracy is enhanced when the number of BS antennas increases, thereby highlighting that the promising application of the proposed scheme in large-scale antenna array systems

    Massive MIMO Systems with Non-Ideal Hardware: Energy Efficiency, Estimation, and Capacity Limits

    Full text link
    The use of large-scale antenna arrays can bring substantial improvements in energy and/or spectral efficiency to wireless systems due to the greatly improved spatial resolution and array gain. Recent works in the field of massive multiple-input multiple-output (MIMO) show that the user channels decorrelate when the number of antennas at the base stations (BSs) increases, thus strong signal gains are achievable with little inter-user interference. Since these results rely on asymptotics, it is important to investigate whether the conventional system models are reasonable in this asymptotic regime. This paper considers a new system model that incorporates general transceiver hardware impairments at both the BSs (equipped with large antenna arrays) and the single-antenna user equipments (UEs). As opposed to the conventional case of ideal hardware, we show that hardware impairments create finite ceilings on the channel estimation accuracy and on the downlink/uplink capacity of each UE. Surprisingly, the capacity is mainly limited by the hardware at the UE, while the impact of impairments in the large-scale arrays vanishes asymptotically and inter-user interference (in particular, pilot contamination) becomes negligible. Furthermore, we prove that the huge degrees of freedom offered by massive MIMO can be used to reduce the transmit power and/or to tolerate larger hardware impairments, which allows for the use of inexpensive and energy-efficient antenna elements.Comment: To appear in IEEE Transactions on Information Theory, 28 pages, 15 figures. The results can be reproduced using the following Matlab code: https://github.com/emilbjornson/massive-MIMO-hardware-impairment

    Power Allocation Schemes for Multicell Massive MIMO Systems

    Full text link
    This paper investigates the sum-rate gains brought by power allocation strategies in multicell massive multipleinput multiple-output systems, assuming time-division duplex transmission. For both uplink and downlink, we derive tractable expressions for the achievable rate with zero-forcing receivers and precoders respectively. To avoid high complexity joint optimization across the network, we propose a scheduling mechanism for power allocation, where in a single time slot, only cells that do not interfere with each other adjust their transmit powers. Based on this, corresponding transmit power allocation strategies are derived, aimed at maximizing the sum rate per-cell. These schemes are shown to bring considerable gains over equal power allocation for practical antenna configurations (e.g., up to a few hundred). However, with fixed number of users (N), these gains diminish as M turns to infinity, and equal power allocation becomes optimal. A different conclusion is drawn for the case where both M and N grow large together, in which case: (i) improved rates are achieved as M grows with fixed M/N ratio, and (ii) the relative gains over the equal power allocation diminish as M/N grows. Moreover, we also provide applicable values of M/N under an acceptable power allocation gain threshold, which can be used as to determine when the proposed power allocation schemes yield appreciable gains, and when they do not. From the network point of view, the proposed scheduling approach can achieve almost the same performance as the joint power allocation after one scheduling round, with much reduced complexity

    On Detection Issues in the SC-based Uplink of a MU-MIMO System with a Large Number of BS Antennas

    Full text link
    This paper deals with SC/FDE within a MU-MIMO system where a large number of BS antennas is adopted. In this context, either linear or reduced-complexity iterative DF detection techniques are considered. Regarding performance evaluation by simulation, appropriate semi-analytical methods are proposed. This paper includes a detailed evaluation of BER performances for uncoded 4-Quadrature Amplitude Modulation (4-QAM) schemes and a MU-MIMO channel with uncorrelated Rayleigh fading. The accuracy of performance results obtained through the semi-analytical simulation methods is assessed by means of parallel conventional Monte Carlo simulations, under the assumptions of perfect power control and perfect channel estimation. The performance results are discussed in detail, with the help of selected performance bounds. We emphasize that a moderately large number of BS antennas is enough to closely approximate the SIMO MFB performance, especially when using the suggested low-complexity iterative DF technique, which does not require matrix inversion operations. We also emphasize the achievable "massive MIMO" effects, even for strongly reduced-complexity linear detection techniques, provided that the number of BS antennas is much higher than the number of antennas which are jointly employed in the terminals of the multiple autonomous users.Comment: 7 pages, 4 figure

    Random Access for Massive MIMO Systems with Intra-Cell Pilot Contamination

    Full text link
    Massive MIMO systems, where the base stations are equipped with hundreds of antenna elements, are an attractive way to attain unprecedented spectral efficiency in future wireless networks. In the "classical" massive MIMO setting, the terminals are assumed fully loaded and a main impairment to the performance comes from the inter-cell pilot contamination, i.e., interference from terminals in neighboring cells using the same pilots as in the home cell. However, when the terminals are active intermittently, it is viable to avoid inter-cell contamination by pre-allocation of pilots, while same-cell terminals use random access to select the allocated pilot sequences. This leads to the problem of intra-cell pilot contamination. We propose a framework for random access in massive MIMO networks and derive new uplink sum rate expressions that take intra-cell pilot collisions, intermittent terminal activity, and interference into account. We use these expressions to optimize the terminal activation probability and pilot length

    Cell-Free Massive MIMO versus Small Cells

    Get PDF
    A Cell-Free Massive MIMO (multiple-input multiple-output) system comprises a very large number of distributed access points (APs)which simultaneously serve a much smaller number of users over the same time/frequency resources based on directly measured channel characteristics. The APs and users have only one antenna each. The APs acquire channel state information through time-division duplex operation and the reception of uplink pilot signals transmitted by the users. The APs perform multiplexing/de-multiplexing through conjugate beamforming on the downlink and matched filtering on the uplink. Closed-form expressions for individual user uplink and downlink throughputs lead to max-min power control algorithms. Max-min power control ensures uniformly good service throughout the area of coverage. A pilot assignment algorithm helps to mitigate the effects of pilot contamination, but power control is far more important in that regard. Cell-Free Massive MIMO has considerably improved performance with respect to a conventional small-cell scheme, whereby each user is served by a dedicated AP, in terms of both 95%-likely per-user throughput and immunity to shadow fading spatial correlation. Under uncorrelated shadow fading conditions, the cell-free scheme provides nearly 5-fold improvement in 95%-likely per-user throughput over the small-cell scheme, and 10-fold improvement when shadow fading is correlated.Comment: EEE Transactions on Wireless Communications, accepted for publicatio
    corecore