15,182 research outputs found

    Study on QoS support in 802.11e-based multi-hop vehicular wireless ad hoc networks

    Get PDF
    Multimedia communications over vehicular ad hoc networks (VANET) will play an important role in the future intelligent transport system (ITS). QoS support for VANET therefore becomes an essential problem. In this paper, we first study the QoS performance in multi-hop VANET by using the standard IEEE 802.11e EDCA MAC and our proposed triple-constraint QoS routing protocol, Delay-Reliability-Hop (DeReHQ). In particular, we evaluate the DeReHQ protocol together with EDCA in highway and urban areas. Simulation results show that end-to-end delay performance can sometimes be achieved when both 802.11e EDCA and DeReHQ extended AODV are used. However, further studies on cross-layer optimization for QoS support in multi-hop environment are required

    Social-aware Opportunistic Routing Protocol based on User's Interactions and Interests

    Full text link
    Nowadays, routing proposals must deal with a panoply of heterogeneous devices, intermittent connectivity, and the users' constant need for communication, even in rather challenging networking scenarios. Thus, we propose a Social-aware Content-based Opportunistic Routing Protocol, SCORP, that considers the users' social interaction and their interests to improve data delivery in urban, dense scenarios. Through simulations, using synthetic mobility and human traces scenarios, we compare the performance of our solution against other two social-aware solutions, dLife and Bubble Rap, and the social-oblivious Spray and Wait, in order to show that the combination of social awareness and content knowledge can be beneficial when disseminating data in challenging networks

    Study of Obstacle effect on the GPSR protocol and a Novel Intelligent Greedy Routing protocol for VANETs

    Get PDF
    In recent years, connected vehicle technologies have been developed by automotive companies, academia, and researchers as part of Intelligent Transportation Systems (ITS). This group of stakeholders continue to work on these technologies to make them as reliable and cost-effective as possible. This attention is because of the increasing connected vehicles safety-related, entertainment, and traffic management applications, which have the potential to decrease the number of road accidents, save fuel and time for millions of daily commuters worldwide. Vehicular Ad-Hoc Network (VANET), which is a subgroup of Mobile Ad-Hoc Network (MANET), is being developed and implemented in vehicles as the critical structure for connected vehicles applications. VANET provides a promising concept to reduce the number of fatalities caused by road accidents, to improve traffic efficiency, and to provide infotainment. To support the increasing number of safety-related applications, VANETs are required to perform reliably. Since VANETs promise numerous safety applications requiring time-bound delivery of data packets, it is also necessary to replicate real-world scenarios in simulations as accurately as possible. Taking into account the effect of realistic obstacles while simulating a variety of case scenarios increases the reliability of the tested routing protocol to appropriately perform in real-world situations. It also exposes routing protocols to possible vulnerabilities caused by obstacles. Nevertheless, it is not uncommon for researchers to omit real-world physical layer communication hurdles in simulation-based tests, including not considering the effect of obstacles on their routing protocol performance evaluation simulations. Consequently, the performance of these protocols is usually overestimated and do not support in real-world environment. Failure to account for obstacle effects overstate the network performance. In this thesis, a framework for measuring obstacle effects on routing protocols is defined. We also propose, a new routing protocol based on the traditional Greedy Perimeter Stateless Routing (GPSR) protocol called Intelligent Greedy Routing (IGR) protocol. The proposed IGR protocol considers a parameter called ReceptivityReceptivity to chose the next hop in a route. We implemented the new protocol using the Simulation of Urban Mobility (SUMO) and the Network Simulator (NS-3). An analysis of Packet Delivery Ratio (PDR), End-to-End Delay (E2ED) and Mean Hop count with the assumption that nodes (vehicles) are moving in various topologies is presented in this thesis. The study presented here gives a general idea of the effects of obstacles on the Greedy Perimeter Stateless Routing (GPSR) protocol considering multiple realistic scenarios such as Urban, Residential and Highway. In addition, we compare the performance of GPSR and the new IGR protocols with the presence of obstacles considering various topologies. The new proposed IGR protocol performs better compared to the traditional GPSR for all the investigated metrics

    The Dynamics of Vehicular Networks in Urban Environments

    Full text link
    Vehicular Ad hoc NETworks (VANETs) have emerged as a platform to support intelligent inter-vehicle communication and improve traffic safety and performance. The road-constrained, high mobility of vehicles, their unbounded power source, and the emergence of roadside wireless infrastructures make VANETs a challenging research topic. A key to the development of protocols for inter-vehicle communication and services lies in the knowledge of the topological characteristics of the VANET communication graph. This paper explores the dynamics of VANETs in urban environments and investigates the impact of these findings in the design of VANET routing protocols. Using both real and realistic mobility traces, we study the networking shape of VANETs under different transmission and market penetration ranges. Given that a number of RSUs have to be deployed for disseminating information to vehicles in an urban area, we also study their impact on vehicular connectivity. Through extensive simulations we investigate the performance of VANET routing protocols by exploiting the knowledge of VANET graphs analysis.Comment: Revised our testbed with even more realistic mobility traces. Used the location of real Wi-Fi hotspots to simulate RSUs in our study. Used a larger, real mobility trace set, from taxis in Shanghai. Examine the implications of our findings in the design of VANET routing protocols by implementing in ns-3 two routing protocols (GPCR & VADD). Updated the bibliography section with new research work

    Optimal Alignments for Designing Urban Transport Systems: Application to Seville

    Get PDF
    The achievement of some of the Sustainable Development Goals (SDGs) from the recent 2030 Agenda for Sustainable Development has drawn the attention of many countries towards urban transport networks. Mathematical modeling constitutes an analytical tool for the formal description of a transportation system whereby it facilitates the introduction of variables and the definition of objectives to be optimized. One of the stages of the methodology followed in the design of urban transit systems starts with the determination of corridors to optimize the population covered by the system whilst taking into account the mobility patterns of potential users and the time saved when the public network is used instead of private means of transport. Since the capture of users occurs at stations, it seems reasonable to consider an extensive and homogeneous set of candidate sites evaluated according to the parameters considered (such as pedestrian population captured and destination preferences) and to select subsets of stations so that alignments can take place. The application of optimization procedures that decide the sequence of nodes composing the alignment can produce zigzagging corridors, which are less appropriate for the design of a single line. The main aim of this work is to include a new criterion to avoid the zigzag effect when the alignment is about to be determined. For this purpose, a curvature concept for polygonal lines is introduced, and its performance is analyzed when criteria of maximizing coverage and minimizing curvature are combined in the same design algorithm. The results show the application of the mathematical model presented for a real case in the city of Seville in Spain.Ministerio de Economía y Competitividad MTM2015-67706-
    corecore