134,621 research outputs found

    Array Interpolation Methods for Non-Uniform Multibaseline SAR Interferometers

    Get PDF
    This work deals with the interferometric phase (IP) estimation from data collected by nonuniform multibaseline InSAR system. The approach proposed aims to recover the uniform linear array (ULA)data by means of a linear transformation of the data collected by the actual sensing geometry. After array interpolation, the IP estimation is carried out by means of the parametric spectral estimator root-MUSIC. Different InSAR scenarios are analized and the estimation accuracy is obtained performing a Monte Carlo analysis. Furthermore, the estimation performance is analyzed also in presence of array miscalibration and robust interpolation techniques are then proposed. As a benchmark, the hybrid Cramér-Rao bound is calculated in the case of interest

    A model-based circular binary segmentation algorithm for the analysis of array CGH data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Circular Binary Segmentation (CBS) is a permutation-based algorithm for array Comparative Genomic Hybridization (aCGH) data analysis. CBS accurately segments data by detecting change-points using a maximal-<it>t </it>test; but extensive computational burden is involved for evaluating the significance of change-points using permutations. A recent implementation utilizing a hybrid method and early stopping rules (hybrid CBS) to improve the performance in speed was subsequently proposed. However, a time analysis revealed that a major portion of computation time of the hybrid CBS was still spent on permutation. In addition, what the hybrid method provides is an approximation of the significance upper bound or lower bound, not an approximation of the significance of change-points itself.</p> <p>Results</p> <p>We developed a novel model-based algorithm, extreme-value based CBS (eCBS), which limits permutations and provides robust results without loss of accuracy. Thousands of aCGH data under null hypothesis were simulated in advance based on a variety of non-normal assumptions, and the corresponding maximal-<it>t </it>distribution was modeled by the Generalized Extreme Value (GEV) distribution. The modeling results, which associate characteristics of aCGH data to the GEV parameters, constitute lookup tables (eXtreme model). Using the eXtreme model, the significance of change-points could be evaluated in a constant time complexity through a table lookup process.</p> <p>Conclusions</p> <p>A novel algorithm, eCBS, was developed in this study. The current implementation of eCBS consistently outperforms the hybrid CBS 4× to 20× in computation time without loss of accuracy. Source codes, supplementary materials, supplementary figures, and supplementary tables can be found at <url>http://ntumaps.cgm.ntu.edu.tw/eCBSsupplementary</url>.</p

    Multiuser Precoding and Channel Estimation for Hybrid Millimeter Wave MIMO Systems

    Full text link
    In this paper, we develop a low-complexity channel estimation for hybrid millimeter wave (mmWave) systems, where the number of radio frequency (RF) chains is much less than the number of antennas equipped at each transceiver. The proposed channel estimation algorithm aims to estimate the strongest angle-of-arrivals (AoAs) at both the base station (BS) and the users. Then all the users transmit orthogonal pilot symbols to the BS via these estimated strongest AoAs to facilitate the channel estimation. The algorithm does not require any explicit channel state information (CSI) feedback from the users and the associated signalling overhead of the algorithm is only proportional to the number of users, which is significantly less compared to various existing schemes. Besides, the proposed algorithm is applicable to both non-sparse and sparse mmWave channel environments. Based on the estimated CSI, zero-forcing (ZF) precoding is adopted for multiuser downlink transmission. In addition, we derive a tight achievable rate upper bound of the system. Our analytical and simulation results show that the proposed scheme offer a considerable achievable rate gain compared to fully digital systems, where the number of RF chains equipped at each transceiver is equal to the number of antennas. Furthermore, the achievable rate performance gap between the considered hybrid mmWave systems and the fully digital system is characterized, which provides useful system design insights.Comment: 6 pages, accepted for presentation, ICC 201

    Achievable Rates of Multi-User Millimeter Wave Systems with Hybrid Precoding

    Full text link
    Millimeter wave (mmWave) systems will likely employ large antenna arrays at both the transmitters and receivers. A natural application of antenna arrays is simultaneous transmission to multiple users, which requires multi-user precoding at the transmitter. Hardware constraints, however, make it difficult to apply conventional lower frequency MIMO precoding techniques at mmWave. This paper proposes and analyzes a low complexity hybrid analog/digital beamforming algorithm for downlink multi-user mmWave systems. Hybrid precoding involves a combination of analog and digital processing that is motivated by the requirement to reduce the power consumption of the complete radio frequency and mixed signal hardware. The proposed algorithm configures hybrid precoders at the transmitter and analog combiners at multiple receivers with a small training and feedback overhead. For this algorithm, we derive a lower bound on the achievable rate for the case of single-path channels, show its asymptotic optimality at large numbers of antennas, and make useful insights for more general cases. Simulation results show that the proposed algorithm offers higher sum rates compared with analog-only beamforming, and approaches the performance of the unconstrained digital precoding solutions.Comment: to be presented in IEEE ICC 2015 - Workshop on 5G & Beyond - Enabling Technologies and Application

    Performance Analysis of Millimeter Wave Massive MIMO Systems in Centralized and Distributed Schemes

    Get PDF
    This paper considers downlink multi-user millimeter-wave massive multiple-input multiple-output (MIMO) systems in both centralized and distributed configurations, referred to as C-MIMO and D-MIMO, respectively. Assuming the fading channel is composite and comprised of both large-scale fading and small-scale fading, a hybrid precoding algorithm leveraging antenna array response vectors is applied into both the C-MIMO system with fully connected structure and the D-MIMO system with partially connected structure. First, the asymptotic spectral efficiency (SE) of an arbitrary user and the asymptotic average SE of the cell for the C-MIMO system are analyzed. Then, two radio access unit (RAU) selection algorithms are proposed for the D-MIMO system, based on minimal distance (D-based) and maximal signal-to-interference-plus-noise-ratio (SINR) (SINR-based), respectively. For the D-MIMO system with circular layout and D-based RAU selection algorithm, the upper bounds on the asymptotic SE of an arbitrary user and the asymptotic average SE of the cell are also investigated. Finally, numerical results are provided to assess the analytical results and evaluate the effects of the numbers of total transmit antennas and users on system performance. It is shown that, from the perspective of the cell, the D-MIMO system with D-based scheme outperforms the C-MIMO system and achieves almost alike performance compared with the SINR-based solution while requiring less complexity.Peer reviewe
    corecore