56 research outputs found

    Appropriate Design of Parallel Manipulators

    Get PDF
    International audienceAlthough parallel structures have found a niche market in many applications such as machine tools, telescope positioning or food packaging, they are not as successful as expected. The main reason of this relative lack of success is that the study and hardware of parallel structures have clearly not reached the same level of completeness than the one of serial structures. Among the main issues that have to be addressed, the design problem is crucial. Indeed, the performances that can be expected from a parallel robot are heavily dependent upon the choice of the mechanical structure and even more from its dimensioning. In this chapter, we show that classical design methodologies are not appropriate for such closed-loop mechanism and examine what alternatives are possible

    On the optimal design of parallel robots taking into account their deformations and natural frequencies

    Get PDF
    This paper discusses the utility of using simple stiffness and vibrations models, based on the Jacobian matrix of a manipulator and only the rigidity of the actuators, whenever its geometry is optimised. In many works, these simplified models are used to propose optimal design of robots. However, the elasticity of the drive system is often negligible in comparison with the elasticity of the elements, especially in applications where high dynamic performances are needed. Therefore, the use of such a simplified model may lead to the creation of robots with long legs, which will be submitted to large bending and twisting deformations. This paper presents an example of manipulator for which it is preferable to use a complete stiffness or vibration model to obtain the most suitable design and shows that the use of simplified models can lead to mechanisms with poorer rigidity

    Kinematic Performance Measures and Optimization of Parallel Kinematics Manipulators: A Brief Review

    Get PDF
    This chapter covers a number of kinematic performance indices that are instrumental in designing parallel kinematics manipulators. These indices can be used selectively based on manipulator requirements and functionality. This would provide the very practical tool for designers to approach their needs in a very comprehensive fashion. Nevertheless, most applications require a more composite set of requirements that makes optimizing performance more challenging. The later part of this chapter will discuss single-objective and multi-objectives optimization that could handle certain performance indices or a combination of them. A brief description of most common techniques in the literature will be provided

    Optimal dimensional synthesis of a symmetrical five-bar planar upper-extremity neuromotor device

    Get PDF
    Individuals with hemiplegia suffer from impaired arm movements that appear as a marked change in arm stiffness. A quantitative measure of arm stiffness would characterize rehabilitation therapy effectively, while little mechanism is designed to implement the function. A symmetrical five-bar linkage consisting of two revolute joints and three prismatic joints is presented. Inverse kinematics and forward kinematics are obtained first. Then inverse singularities and direct singularities of the mechanism are gained. Based on the results of kinematics analysis, the global stiffness index is defined. Finally, optimal dimensional synthesis of the mechanism in terms of maximum stiffness is conducted by genetic algorithms. The calculation results shows that when length of both the two linkage a=830 mm, interacting angle of the two guides 2d=4.48 radian, and maximum range of displacement of the two carriers dmax=940 mm, the mechanism achieves highest rigidity and its workspace is singularity-free, which covers the human left and right arm range of motion. The proposed novel mechanism featuring high rigidity and a singularity-free workspace can provides rehabilitation training, but also solves the problem of quantitative measure of arm stiffness

    Sensitivity analysis of 3-RPR planar parallel manipulators

    Get PDF
    International audienceThis paper deals with the sensitivity analysis of 3-RPR planar parallel manipulators (PPMs). First, the sensitivity coefficients of the pose of the manipulator moving platform to variations in the geometric parameters and in the actuated variables are expressed algebraically. Moreover, two aggregate sensitivity indices are determined, one related to the orientation of the manipulator moving platform and another one related to its position. Then, a methodology is proposed to compare 3-RPR PPMs with regard to their dexterity, workspace size and sensitivity. Finally, the sensitivity of a 3-RPR PPM is analyzed in detail and four 3-RPR PPMs are compared as illustrative examples

    Torque minimization of the Delta parallel robot

    Get PDF
    National audienceThis paper proposes a new solution to the problem of torque minimization of the Delta robot. The suggested approach involves connecting to the initial structure a secondary mechanical system, which generates a vertical force applied to the platform of the robot. The conditions for optimization are formulated by the minimization of the root-mean-square and maximum values of the input torque due to the static and dynamic loads. The numerical examples show the efficiency of the suggested torque minimization approach

    Design of a Parallel Robotic Manipulator using Evolutionary Computing

    Get PDF
    In this paper the kinematic design of a 6‐dof parallel robotic manipulator is analysed. Firstly, the condition number of the inverse kinematic jacobian is considered as the objective function, measuring the manipulator’s dexterity and a genetic algorithm is used to solve the optimization problem. In a second approach, a neural network model of the analytical objective function is developed and subsequently used as the objective function in the genetic algorithm optimization search process. It is shown that the neuro‐genetic algorithm can find close to optimal solutions for maximum dexterity, significantly reducing the computational burden. The sensitivity of the condition number in the robot’s workspace is analysed and used to guide the designer in choosing the best structural configuration. Finally, a global optimization problem is also addressed

    Mechanical design optimization for multi-finger haptic devices applied to virtual grasping manipulation

    Get PDF
    This paper describes the design of a modular multi-finger haptic device for virtual object manipulation. Mechanical structures are based on one module per finger and can be scaled up to three fingers. Mechanical configurations for two and three fingers are based on the use of one and two redundant axes, respectively. As demonstrated, redundant axes significantly increase workspace and prevent link collisions, which is their main asset with respect to other multi-finger haptic devices. The location of redundant axes and link dimensions have been optimized in order to guarantee a proper workspace, manipulability, force capability, and inertia for the device. The mechanical haptic device design and a thimble adaptable to different finger sizes have also been developed for virtual object manipulation

    Optimal 5R parallel leg design for quadruped robot gait cycle

    Get PDF
    This paper presents the design of optimal dimensions for a two degrees of freedom parallel mechanism used in quadruped for walking application. Serial linkages or open link mechanisms have less stiffness and poor dynamic performance, thus parallel mechanisms were developed. Many researchers have used symmetrical parallel leg for quadruped walking but force requirements are different in forward and return stroke, thus unsymmetrical parallel leg may be optimal. Using genetic algorithm, optimum link length values are obtained and the corresponding peak torque is also found. Copyright © 2020 Mangesh D. Ratolikar, et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited
    corecore