1,023 research outputs found

    Role of advanced technology in the detection of sight-threatening eye disease in a UK community setting.

    Get PDF
    Background/aims: To determine the performance of combinations of structural and functional screening tests in detecting sight-threatening eye disease in a cohort of elderly subjects recruited from primary care. Methods: 505 subjects aged ≥60 years underwent frequency doubling technology (FDT) perimetry, iVue optical coherence tomography (iWellness and peripapillary retinal nerve fibre layer (RNFL) scans) and intraocular pressure with the Ocular Response Analyzer, all performed by an ophthalmic technician. The reference standard was a full ophthalmic examination by an experienced clinician who was masked to the index test results. Subjects were classified as presence or absence of sight-threatening eye disease (clinically significant cataract, primary open-angle glaucoma, intermediate or advanced age-related macular degeneration and significant diabetic retinopathy). Univariate and multivariate logistic regression analyses were used to determine the association between abnormal screening test results and the presence of sight-threatening eye disease. Results: 171 subjects (33.8%) had one or more sight-threatening eye diseases. The multivariate analysis found significant associations with any of the target conditions for visual acuity of <6/12, an abnormal FDT and peripapillary RNFL thickness outside the 99% normal limit. The sensitivity of this optimised screening panel was 61.3% (95% CI 53.5 to 68.7), with a specificity of 78.8% (95% CI 74.0 to 83.1), a positive predictive value of 59.5% (95% CI 53.7 to 65.2) and an overall diagnostic accuracy of 72.9% (95% CI 68.8 to 76.8). Conclusions: A subset of screening tests may provide an accurate and efficient means of population screening for significant eye disease in the elderly. This study provides useful preliminary data to inform the development of further larger, multicentre screening studies to validate this screening panel

    Circumpapillary OCT-Focused Hybrid Learning for Glaucoma Grading Using Tailored Prototypical Neural Networks

    Full text link
    Glaucoma is one of the leading causes of blindness worldwide and Optical Coherence Tomography (OCT) is the quintessential imaging technique for its detection. Unlike most of the state-of-the-art studies focused on glaucoma detection, in this paper, we propose, for the first time, a novel framework for glaucoma grading using raw circumpapillary B-scans. In particular, we set out a new OCT-based hybrid network which combines hand-driven and deep learning algorithms. An OCT-specific descriptor is proposed to extract hand-crafted features related to the retinal nerve fibre layer (RNFL). In parallel, an innovative CNN is developed using skip-connections to include tailored residual and attention modules to refine the automatic features of the latent space. The proposed architecture is used as a backbone to conduct a novel few-shot learning based on static and dynamic prototypical networks. The k-shot paradigm is redefined giving rise to a supervised end-to-end system which provides substantial improvements discriminating between healthy, early and advanced glaucoma samples. The training and evaluation processes of the dynamic prototypical network are addressed from two fused databases acquired via Heidelberg Spectralis system. Validation and testing results reach a categorical accuracy of 0.9459 and 0.8788 for glaucoma grading, respectively. Besides, the high performance reported by the proposed model for glaucoma detection deserves a special mention. The findings from the class activation maps are directly in line with the clinicians' opinion since the heatmaps pointed out the RNFL as the most relevant structure for glaucoma diagnosis

    Deep learning in ophthalmology: The technical and clinical considerations

    Get PDF
    The advent of computer graphic processing units, improvement in mathematical models and availability of big data has allowed artificial intelligence (AI) using machine learning (ML) and deep learning (DL) techniques to achieve robust performance for broad applications in social-media, the internet of things, the automotive industry and healthcare. DL systems in particular provide improved capability in image, speech and motion recognition as well as in natural language processing. In medicine, significant progress of AI and DL systems has been demonstrated in image-centric specialties such as radiology, dermatology, pathology and ophthalmology. New studies, including pre-registered prospective clinical trials, have shown DL systems are accurate and effective in detecting diabetic retinopathy (DR), glaucoma, age-related macular degeneration (AMD), retinopathy of prematurity, refractive error and in identifying cardiovascular risk factors and diseases, from digital fundus photographs. There is also increasing attention on the use of AI and DL systems in identifying disease features, progression and treatment response for retinal diseases such as neovascular AMD and diabetic macular edema using optical coherence tomography (OCT). Additionally, the application of ML to visual fields may be useful in detecting glaucoma progression. There are limited studies that incorporate clinical data including electronic health records, in AL and DL algorithms, and no prospective studies to demonstrate that AI and DL algorithms can predict the development of clinical eye disease. This article describes global eye disease burden, unmet needs and common conditions of public health importance for which AI and DL systems may be applicable. Technical and clinical aspects to build a DL system to address those needs, and the potential challenges for clinical adoption are discussed. AI, ML and DL will likely play a crucial role in clinical ophthalmology practice, with implications for screening, diagnosis and follow up of the major causes of vision impairment in the setting of ageing populations globally

    Deployment of Artificial Intelligence in Real-World Practice: Opportunity and Challenge.

    Full text link
    Artificial intelligence has rapidly evolved from the experimental phase to the implementation phase in many image-driven clinical disciplines, including ophthalmology. A combination of the increasing availability of large datasets and computing power with revolutionary progress in deep learning has created unprecedented opportunities for major breakthrough improvements in the performance and accuracy of automated diagnoses that primarily focus on image recognition and feature detection. Such an automated disease classification would significantly improve the accessibility, efficiency, and cost-effectiveness of eye care systems where it is less dependent on human input, potentially enabling diagnosis to be cheaper, quicker, and more consistent. Although this technology will have a profound impact on clinical flow and practice patterns sooner or later, translating such a technology into clinical practice is challenging and requires similar levels of accountability and effectiveness as any new medication or medical device due to the potential problems of bias, and ethical, medical, and legal issues that might arise. The objective of this review is to summarize the opportunities and challenges of this transition and to facilitate the integration of artificial intelligence (AI) into routine clinical practice based on our best understanding and experience in this area

    Machine learning strategies for diagnostic imaging support on histopathology and optical coherence tomography

    Full text link
    Tesis por compendio[ES] Esta tesis presenta soluciones de vanguardia basadas en algoritmos de computer vision (CV) y machine learning (ML) para ayudar a los expertos en el diagnóstico clínico. Se centra en dos áreas relevantes en el campo de la imagen médica: la patología digital y la oftalmología. Este trabajo propone diferentes paradigmas de machine learning y deep learning para abordar diversos escenarios de supervisión en el estudio del cáncer de próstata, el cáncer de vejiga y el glaucoma. En particular, se consideran métodos supervisados convencionales para segmentar y clasificar estructuras específicas de la próstata en imágenes histológicas digitalizadas. Para el reconocimiento de patrones específicos de la vejiga, se llevan a cabo enfoques totalmente no supervisados basados en técnicas de deep-clustering. Con respecto a la detección del glaucoma, se aplican algoritmos de memoria a corto plazo (LSTMs) que permiten llevar a cabo un aprendizaje recurrente a partir de volúmenes de tomografía por coherencia óptica en el dominio espectral (SD-OCT). Finalmente, se propone el uso de redes neuronales prototípicas (PNN) en un marco de few-shot learning para determinar el nivel de gravedad del glaucoma a partir de imágenes OCT circumpapilares. Los métodos de inteligencia artificial (IA) que se detallan en esta tesis proporcionan una valiosa herramienta de ayuda al diagnóstico por imagen, ya sea para el diagnóstico histológico del cáncer de próstata y vejiga o para la evaluación del glaucoma a partir de datos de OCT.[CA] Aquesta tesi presenta solucions d'avantguarda basades en algorismes de *computer *vision (CV) i *machine *learning (ML) per a ajudar als experts en el diagnòstic clínic. Se centra en dues àrees rellevants en el camp de la imatge mèdica: la patologia digital i l'oftalmologia. Aquest treball proposa diferents paradigmes de *machine *learning i *deep *learning per a abordar diversos escenaris de supervisió en l'estudi del càncer de pròstata, el càncer de bufeta i el glaucoma. En particular, es consideren mètodes supervisats convencionals per a segmentar i classificar estructures específiques de la pròstata en imatges histològiques digitalitzades. Per al reconeixement de patrons específics de la bufeta, es duen a terme enfocaments totalment no supervisats basats en tècniques de *deep-*clustering. Respecte a la detecció del glaucoma, s'apliquen algorismes de memòria a curt termini (*LSTMs) que permeten dur a terme un aprenentatge recurrent a partir de volums de tomografia per coherència òptica en el domini espectral (SD-*OCT). Finalment, es proposa l'ús de xarxes neuronals *prototípicas (*PNN) en un marc de *few-*shot *learning per a determinar el nivell de gravetat del glaucoma a partir d'imatges *OCT *circumpapilares. Els mètodes d'intel·ligència artificial (*IA) que es detallen en aquesta tesi proporcionen una valuosa eina d'ajuda al diagnòstic per imatge, ja siga per al diagnòstic histològic del càncer de pròstata i bufeta o per a l'avaluació del glaucoma a partir de dades d'OCT.[EN] This thesis presents cutting-edge solutions based on computer vision (CV) and machine learning (ML) algorithms to assist experts in clinical diagnosis. It focuses on two relevant areas at the forefront of medical imaging: digital pathology and ophthalmology. This work proposes different machine learning and deep learning paradigms to address various supervisory scenarios in the study of prostate cancer, bladder cancer and glaucoma. In particular, conventional supervised methods are considered for segmenting and classifying prostate-specific structures in digitised histological images. For bladder-specific pattern recognition, fully unsupervised approaches based on deep-clustering techniques are carried out. Regarding glaucoma detection, long-short term memory algorithms (LSTMs) are applied to perform recurrent learning from spectral-domain optical coherence tomography (SD-OCT) volumes. Finally, the use of prototypical neural networks (PNNs) in a few-shot learning framework is proposed to determine the severity level of glaucoma from circumpapillary OCT images. The artificial intelligence (AI) methods detailed in this thesis provide a valuable tool to aid diagnostic imaging, whether for the histological diagnosis of prostate and bladder cancer or glaucoma assessment from OCT data.García Pardo, JG. (2022). Machine learning strategies for diagnostic imaging support on histopathology and optical coherence tomography [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/182400Compendi

    A Review of the Management of Eye Diseases Using Artificial Intelligence, Machine Learning, and Deep Learning in Conjunction with Recent Research on Eye Health Problems: Eye Microbiome

    Get PDF
    In the field of computer science, Artificial Intelligence can be considered one of the branches that study the development of algorithms that mimic certain aspects of human intelligence. Over the past few years, there has been a rapid advancement in the technology of computer-aided diagnosis (CAD). This in turn has led to an increase in the use of deep learning methods in a variety of applications. For us to be able to understand how AI can be used in order to recognize eye diseases, it is crucial that we have a deep understanding of how AI works in its core concepts. This paper aims to describe the most recent and applicable uses of artificial intelligence in the various fields of ophthalmology disease

    Machine Learning Approaches for Automated Glaucoma Detection using Clinical Data and Optical Coherence Tomography Images

    Full text link
    Glaucoma is a multi-factorial, progressive blinding optic-neuropathy. A variety of factors, including genetics, vasculature, anatomy, and immune factors, are involved. Worldwide more than 80 million people are affected by glaucoma, and around 300,000 in Australia, where 50% remain undiagnosed. Untreated glaucoma can lead to blindness. Early detection by Artificial intelligence (AI) is crucial to accelerate the diagnosis process and can prevent further vision loss. Many proposed AI systems have shown promising performance for automated glaucoma detection using two-dimensional (2D) data. However, only a few studies had optimistic outcomes for glaucoma detection and staging. Moreover, the automated AI system still faces challenges in diagnosing at the clinicians’ level due to the lack of interpretability of the ML algorithms and integration of multiple clinical data. AI technology would be welcomed by doctors and patients if the "black box" notion is overcome by developing an explainable, transparent AI system with similar pathological markers used by clinicians as the sign of early detection and progression of glaucomatous damage. Therefore, the thesis aimed to develop a comprehensive AI model to detect and stage glaucoma by incorporating a variety of clinical data and utilising advanced data analysis and machine learning (ML) techniques. The research first focuses on optimising glaucoma diagnostic features by combining structural, functional, demographic, risk factor, and optical coherence tomography (OCT) features. The significant features were evaluated using statistical analysis and trained in ML algorithms to observe the detection performance. Three crucial structural ONH OCT features: cross-sectional 2D radial B-scan, 3D vascular angiography and temporal-superior-nasal-inferior-temporal (TSNIT) B-scan, were analysed and trained in explainable deep learning (DL) models for automated glaucoma prediction. The explanation behind the decision making of DL models were successfully demonstrated using the feature visualisation. The structural features or distinguished affected regions of TSNIT OCT scans were precisely localised for glaucoma patients. This is consistent with the concept of explainable DL, which refers to the idea of making the decision-making processes of DL models transparent and interpretable to humans. However, artifacts and speckle noise often result in misinterpretation of the TSNIT OCT scans. This research also developed an automated DL model to remove the artifacts and noise from the OCT scans, facilitating error-free retinal layers segmentation, accurate tissue thickness estimation and image interpretation. Moreover, to monitor and grade glaucoma severity, the visual field (VF) test is commonly followed by clinicians for treatment and management. Therefore, this research uses the functional features extracted from VF images to train ML algorithms for staging glaucoma from early to advanced/severe stages. Finally, the selected significant features were used to design and develop a comprehensive AI model to detect and grade glaucoma stages based on the data quantity and availability. In the first stage, a DL model was trained with TSNIT OCT scans, and its output was combined with significant structural and functional features and trained in ML models. The best-performed ML model achieved an area under the curve (AUC): 0.98, an accuracy of 97.2%, a sensitivity of 97.9%, and a specificity of 96.4% for detecting glaucoma. The model achieved an overall accuracy of 90.7% and an F1 score of 84.0% for classifying normal, early, moderate, and advanced-stage glaucoma. In conclusion, this thesis developed and proposed a comprehensive, evidence-based AI model that will solve the screening problem for large populations and relieve experts from manually analysing a slew of patient data and associated misinterpretation problems. Moreover, this thesis demonstrated three structural OCT features that could be added as excellent diagnostic markers for precise glaucoma diagnosis
    corecore