47,644 research outputs found

    Charge separation: From the topology of molecular electronic transitions to the dye/semiconductor interfacial energetics and kinetics

    Full text link
    Charge separation properties, that is the ability of a chromophore, or a chromophore/semiconductor interface, to separate charges upon light absorption, are crucial characteristics for an efficient photovoltaic device. Starting from this concept, we devote the first part of this book chapter to the topological analysis of molecular electronic transitions induced by photon capture. Such analysis can be either qualitative or quantitative, and is presented here in the framework of the reduced density matrix theory applied to single-reference, multiconfigurational excited states. The qualitative strategies are separated into density-based and wave function-based approaches, while the quantitative methods reported here for analysing the photoinduced charge transfer nature are either fragment-based, global or statistical. In the second part of this chapter we extend the analysis to dye-sensitized metal oxide surface models, discussing interfacial charge separation, energetics and electron injection kinetics from the dye excited state to the semiconductor conduction band states

    Triplet-Tuning: A Novel Family of Non-Empirical Exchange-Correlation Functionals

    Get PDF
    In the framework of DFT, the lowest triplet excited state, T1_1, can be evaluated using multiple formulations, the most straightforward of which are UDFT and TDDFT. Assuming the exact XC functional is applied, UDFT and TDDFT provide identical energies for T1_1 (ETE_{\rm T}), which is also a constraint that we require our XC functionals to obey. However, this condition is not satisfied by most of the popular XC functionals, leading to inaccurate predictions of low-lying, spectroscopically and photochemically important excited states, such as T1_1 and S1_1. Inspired by the optimal tuning strategy for frontier orbital energies [Stein, Kronik, and Baer, {\it J. Am. Chem. Soc.} {\bf 2009}, 131, 2818], we proposed a novel and non-empirical prescription of constructing an XC functional in which the agreement between UDFT and TDDFT in ETE_{\rm T} is strictly enforced. Referred to as "triplet tuning", our procedure allows us to formulate the XC functional on a case-by-case basis using the molecular structure as the exclusive input, without fitting to any experimental data. The first triplet tuned XC functional, TT-ω\omegaPBEh, is formulated as a long-range-corrected hybrid of PBE and HF functionals [Rohrdanz, Martins, and Herbert, {\it J. Chem. Phys.} {\bf 2009}, 130, 054112] and tested on four sets of large organic molecules. Compared to existing functionals, TT-ω\omegaPBEh manages to provide more accurate predictions for key spectroscopic and photochemical observables, including but not limited to ETE_{\rm T}, ESE_{\rm S}, ΔEST\Delta E_{\rm ST}, and II, as it adjusts the effective electron-hole interactions to arrive at the correct excitation energies. This promising triplet tuning scheme can be applied to a broad range of systems that were notorious in DFT for being extremely challenging

    Donor and acceptor levels of organic photovoltaic compounds from first principles

    Get PDF
    Accurate and efficient approaches to predict the optical properties of organic semiconducting compounds could accelerate the search for efficient organic photovoltaic materials. Nevertheless, predicting the optical properties of organic semiconductors has been plagued by the inaccuracy or computational cost of conventional first-principles calculations. In this work, we demonstrate that orbital-dependent density-functional theory based upon Koopmans' condition [Phys. Rev. B 82, 115121 (2010)] is apt at describing donor and acceptor levels for a wide variety of organic molecules, clusters, and oligomers within a few tenths of an electron-volt relative to experiment, which is comparable to the predictive performance of many-body perturbation theory methods at a fraction of the computational cost.Comment: 13 pages, 11 figure

    Ultrafast charge transfer and vibronic coupling in a laser-excited hybrid inorganic/organic interface

    No full text
    Hybrid interfaces formed by inorganic semiconductors and organic molecules are intriguing materials for opto-electronics. Interfacial charge transfer is primarily responsible for their peculiar electronic structure and optical response. Hence, it is essential to gain insight into this fundamental process also beyond the static picture. Ab initio methods based on real-time time-dependent density-functional theory coupled to the Ehrenfest molecular dynamics scheme are ideally suited for this problem. We investigate a laser-excited hybrid inorganic/organic interface formed by the electron acceptor molecule 2,3,5,6-tetrafluoro-7,7,8,8-tetracyano-quinodimethane (F4TCNQ) physisorbed on a hydrogenated silicon cluster, and we discuss the fundamental mechanisms of charge transfer in the ultrashort time window following the impulsive excitation. The considered interface is p-doped and exhibits charge transfer in the ground state. When it is excited by a resonant laser pulse, the charge transfer across the interface is additionally increased, but contrary to previous observations in all-organic donor/acceptor complexes, it is not further promoted by vibronic coupling. In the considered time window of 100 fs, the molecular vibrations are coupled to the electron dynamics and enhance intramolecular charge transfer. Our results highlight the complexity of the physics involved and demonstrate the ability of the adopted formalism to achieve a comprehensive understanding of ultrafast charge transfer in hybrid materials

    Global hybrids from the semiclassical atom theory satisfying the local density linear response

    Full text link
    We propose global hybrid approximations of the exchange-correlation (XC) energy functional which reproduce well the modified fourth-order gradient expansion of the exchange energy in the semiclassical limit of many-electron neutral atoms and recover the full local density approximation (LDA) linear response. These XC functionals represent the hybrid versions of the APBE functional [Phys. Rev. Lett. 106, 186406, (2011)] yet employing an additional correlation functional which uses the localization concept of the correlation energy density to improve the compatibility with the Hartree-Fock exchange as well as the coupling-constant-resolved XC potential energy. Broad energetical and structural testings, including thermochemistry and geometry, transition metal complexes, non-covalent interactions, gold clusters and small gold-molecule interfaces, as well as an analysis of the hybrid parameters, show that our construction is quite robust. In particular, our testing shows that the resulting hybrid, including 20\% of Hartree-Fock exchange and named hAPBE, performs remarkably well for a broad palette of systems and properties, being generally better than popular hybrids (PBE0 and B3LYP). Semi-empirical dispersion corrections are also provided.Comment: 12 pages, 4 figure

    Ab-Initio Calculation of Molecular Aggregation Effects: a Coumarin-343 Case Study

    Get PDF
    We present time-dependent density functional theory (TDDFT) calculations for single and dimerized Coumarin-343 molecules in order to investigate the quantum mechanical effects of chromophore aggregation in extended systems designed to function as a new generation of sensors and light-harvesting devices. Using the single-chromophore results, we describe the construction of effective Hamiltonians to predict the excitonic properties of aggregate systems. We compare the electronic coupling properties predicted by such effective Hamiltonians to those obtained from TDDFT calculations of dimers, and to the coupling predicted by the transition density cube (TDC) method. We determine the accuracy of the dipole-dipole approximation and TDC with respect to the separation distance and orientation of the dimers. In particular, we investigate the effects of including Coulomb coupling terms ignored in the typical tight-binding effective Hamiltonian. We also examine effects of orbital relaxation which cannot be captured by either of these models

    How accurate is density functional theory at predicting dipole moments? An assessment using a new database of 200 benchmark values

    Full text link
    Dipole moments are a simple, global measure of the accuracy of the electron density of a polar molecule. Dipole moments also affect the interactions of a molecule with other molecules as well as electric fields. To directly assess the accuracy of modern density functionals for calculating dipole moments, we have developed a database of 200 benchmark dipole moments, using coupled cluster theory through triple excitations, extrapolated to the complete basis set limit. This new database is used to assess the performance of 88 popular or recently developed density functionals. The results suggest that double hybrid functionals perform the best, yielding dipole moments within about 3.6-4.5% regularized RMS error versus the reference values---which is not very different from the 4% regularized RMS error produced by coupled cluster singles and doubles. Many hybrid functionals also perform quite well, generating regularized RMS errors in the 5-6% range. Some functionals however exhibit large outliers and local functionals in general perform less well than hybrids or double hybrids.Comment: Added several double hybrid functionals, most of which turned out to be better than any functional from Rungs 1-4 of Jacob's ladder and are actually competitive with CCS

    The Monomer Electron Density Force Field (MEDFF) : a physically inspired model for noncovalent interactions

    Get PDF
    We propose a methodology to derive pairwise-additive noncovalent force fields from monomer electron densities without any empirical input. Energy expressions are based on the symmetry-adapted perturbation theory (SAPT) decomposition of interaction energies. This ensures a physically motivated force field featuring an electrostatic, exchange repulsion, dispersion, and induction contribution, which contains two types of parameters. First, each contribution depends on several fixed atomic parameters, resulting from a partitioning of the monomer electron density. Second, each of the last three contributions (exchange-repulsion, dispersion, and induction) contains exactly one linear fitting parameter. These three so-called interaction parameters in the model are initially estimated separately using SAPT reference calculations for the S66x8 database of noncovalent dimers. In a second step, the three interaction parameters are further refined simultaneously to reproduce CCSD(T)/CBS interaction energies for the same database. The limited number of parameters that are fitted to dimer interaction energies (only three) avoids ill-conditioned fits that plague conventional parameter optimizations. For the exchange repulsion and dispersion component, good results are obtained for all dimers in the S66x8 database using one single value for the associated interaction parameters. The values of those parameters can be considered universal and can also be used for dimers not present in the original database used for fitting. For the induction component such an approach is only viable for the dispersion dominated dimers in the S66x8 database. For other dimers (such as hydrogen-bonded complexes), we show that our methodology remains applicable. However, the interaction parameter needs to be determined on a case-specific basis. As an external validation:, the force field predicts interaction energies in good agreement with CCSD(T)/CBS values for dispersion dominated dimers extracted from an HIV-II protease crystal structure with a bound ligand (indinavir). Furthermore, experimental second virial coefficients of small alkanes and alkenes are well reproduced

    Gas Phase Structure and Reactivity of Doubly Charged Microhydrated Calcium(II)-Catechol Complexes Probed by Infrared Spectroscopy

    Get PDF
    Doubly charged microhydrated adducts formed from catechol and calcium(II) were produced in the gas phase using electrospray ionization (ESI) appearing as the most important ions in the mass spectra recorded. The gas phase structures of [Ca(catechol)2(H2O)]2+ and [Ca(catechol)2(H2O)2]2+ have been assayed by IR multiphoton dissociation (IRMPD) spectroscopy, recording their vibrational spectra in the 3450–3750 cm–1 range (OH stretching region) and in the 900–1700 cm–1 fingerprint spectral region. The agreement between experimental and calculated IR spectra of the selected cluster ions confirmed the suitability of the proposed geometries. In addition, quantum chemical calculations at the B3LYP/6-311+G(d,p) level of theory were performed for [Ca(catechol)2(H2O)]2+ to gain insight into the major routes of dissociation. The results suggest that loss of the water molecule is the lowest energy fragmentation channel followed by charge separation products and neutral loss of one catechol molecule, in agreement with the product ions observed upon collision-induced dissociation (CID).Fil: Butler, Matias. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad de Microanálisis y Métodos Físicos en Química Orgánica. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Unidad de Microanálisis y Métodos Físicos en Química Orgánica; ArgentinaFil: Arroyo Mañez, Pau. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad de Microanálisis y Métodos Físicos en Química Orgánica. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Unidad de Microanálisis y Métodos Físicos en Química Orgánica; ArgentinaFil: Cabrera, Gabriela Myriam. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad de Microanálisis y Métodos Físicos en Química Orgánica. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Unidad de Microanálisis y Métodos Físicos en Química Orgánica; ArgentinaFil: Phillipe Maître. Universite Paris Sud; Franci
    • …
    corecore