10,888 research outputs found

    Enhanced Industrial Machinery Condition Monitoring Methodology based on Novelty Detection and Multi-Modal Analysis

    Get PDF
    This paper presents a condition-based monitoring methodology based on novelty detection applied to industrial machinery. The proposed approach includes both, the classical classification of multiple a priori known scenarios, and the innovative detection capability of new operating modes not previously available. The development of condition-based monitoring methodologies considering the isolation capabilities of unexpected scenarios represents, nowadays, a trending topic able to answer the demanding requirements of the future industrial processes monitoring systems. First, the method is based on the temporal segmentation of the available physical magnitudes, and the estimation of a set of time-based statistical features. Then, a double feature reduction stage based on Principal Component Analysis and Linear Discriminant Analysis is applied in order to optimize the classification and novelty detection performances. The posterior combination of a Feed-forward Neural Network and One-Class Support Vector Machine allows the proper interpretation of known and unknown operating conditions. The effectiveness of this novel condition monitoring scheme has been verified by experimental results obtained from an automotive industry machine.Postprint (published version

    Classification of multiple electromagnetic interference events in high-voltage power plant

    Get PDF
    This paper addresses condition assessment of electrical assets contained in high voltage power plants. Our work introduces a novel analysis approach of multiple event signals related to faults, and which are measured using Electro-Magnetic Interference method. The proposed method transfers the expert’s knowledge on events presence in the signals to an intelligent system which could potentially be used for automatic EMI diagnosis. Cyclic spectrum analysis is used as feature extraction to efficiently extract the repetitive rate and the dynamic discharge level of the events, and multi-class support vector machine is adopted for their classification. This first and novel method achieved successful results which may have potential implications on developing a framework for automatic diagnosis tool of EMI events

    Classification of partial discharge signals by combining adaptive local iterative filtering and entropy features

    Get PDF
    Electro-Magnetic Interference (EMI) is a measurement technique for Partial Discharge (PD) signals which arise in operating electrical machines, generators and other auxiliary equipment due to insulation degradation. Assessment of PD can help to reduce machine downtime and circumvent high replacement and maintenance costs. EMI signals can be complex to analyze due to their nonstationary nature. In this paper, a software condition-monitoring model is presented and a novel feature extraction technique, suitable for nonstationary EMI signals, is developed. This method maps multiple discharge sources signals, including PD, from the time domain to a feature space which aids interpretation of subsequent fault information. Results show excellent performance in classifying the different discharge sources

    Fault detection in operating helicopter drive train components based on support vector data description

    Get PDF
    The objective of the paper is to develop a vibration-based automated procedure dealing with early detection of mechanical degradation of helicopter drive train components using Health and Usage Monitoring Systems (HUMS) data. An anomaly-detection method devoted to the quantification of the degree of deviation of the mechanical state of a component from its nominal condition is developed. This method is based on an Anomaly Score (AS) formed by a combination of a set of statistical features correlated with specific damages, also known as Condition Indicators (CI), thus the operational variability is implicitly included in the model through the CI correlation. The problem of fault detection is then recast as a one-class classification problem in the space spanned by a set of CI, with the aim of a global differentiation between normal and anomalous observations, respectively related to healthy and supposedly faulty components. In this paper, a procedure based on an efficient one-class classification method that does not require any assumption on the data distribution, is used. The core of such an approach is the Support Vector Data Description (SVDD), that allows an efficient data description without the need of a significant amount of statistical data. Several analyses have been carried out in order to validate the proposed procedure, using flight vibration data collected from a H135, formerly known as EC135, servicing helicopter, for which micro-pitting damage on a gear was detected by HUMS and assessed through visual inspection. The capability of the proposed approach of providing better trade-off between false alarm rates and missed detection rates with respect to individual CI and to the AS obtained assuming jointly-Gaussian-distributed CI has been also analysed
    • …
    corecore