1,794 research outputs found

    Performance assessment of RDF graph databases for smart city services

    Get PDF
    Abstract Smart cities are providing advanced services aggregating and exploiting data from different sources. Cities collect static data such as road graphs, service description, as well as dynamic/real time data like weather forecast, traffic sensors, bus positions, city sensors, events, emergency data, flows, etc. RDF stores may be used to set up knowledge bases integrating heterogeneous information for web and mobile applications to use the data for new advanced services to citizens and city administrators, thus exploiting inferential capabilities, temporal and spatial reasoning, and text indexing. In this paper, the needs and constraints for RDF stores to be used for smart cities services, together with the currently available RDF stores are evaluated. The assessment model allows a full understanding of whether an RDF store is suitable to be used as a basis for Smart City modeling and applications. The RDF assessment model is also supported by a benchmark which extends available RDF store benchmarks at the state the art. The comparison of the RDF stores has been applied on a number of well-known RDF stores as Virtuoso, GraphDB (former OWLIM), Oracle, StarDog, and many others. The paper also reports the adoption of the proposed Smart City RDF Benchmark on the basis of Florence Smart City model, data sets and tools accessible as Km4City Http://www.Km4City.org , and adopted in the European Commission international smart city projects named RESOLUTE H2020, REPLICATE H2020, and in Sii-Mobility National Smart City project in Italy

    Knowledge-infused and Consistent Complex Event Processing over Real-time and Persistent Streams

    Full text link
    Emerging applications in Internet of Things (IoT) and Cyber-Physical Systems (CPS) present novel challenges to Big Data platforms for performing online analytics. Ubiquitous sensors from IoT deployments are able to generate data streams at high velocity, that include information from a variety of domains, and accumulate to large volumes on disk. Complex Event Processing (CEP) is recognized as an important real-time computing paradigm for analyzing continuous data streams. However, existing work on CEP is largely limited to relational query processing, exposing two distinctive gaps for query specification and execution: (1) infusing the relational query model with higher level knowledge semantics, and (2) seamless query evaluation across temporal spaces that span past, present and future events. These allow accessible analytics over data streams having properties from different disciplines, and help span the velocity (real-time) and volume (persistent) dimensions. In this article, we introduce a Knowledge-infused CEP (X-CEP) framework that provides domain-aware knowledge query constructs along with temporal operators that allow end-to-end queries to span across real-time and persistent streams. We translate this query model to efficient query execution over online and offline data streams, proposing several optimizations to mitigate the overheads introduced by evaluating semantic predicates and in accessing high-volume historic data streams. The proposed X-CEP query model and execution approaches are implemented in our prototype semantic CEP engine, SCEPter. We validate our query model using domain-aware CEP queries from a real-world Smart Power Grid application, and experimentally analyze the benefits of our optimizations for executing these queries, using event streams from a campus-microgrid IoT deployment.Comment: 34 pages, 16 figures, accepted in Future Generation Computer Systems, October 27, 201

    ConTaaS: An Approach to Internet-Scale Contextualisation for Developing Efficient Internet of Things Applications

    Get PDF
    The Internet of Things (IoT) is a new internet evolution that involves connecting billions of sensors and other devices to the Internet. Such IoT devices or IoT things can communicate directly. They also allow Internet users and applications to access and distil their data, control their functions, and harness the information and functionality provided by multiple IoT devices to offer novel smart services. IoT devices collectively generate massive amounts of data with an incredible velocity. Processing IoT device data and distilling high-value information from them presents an Internet-scale computational challenge. Contextualisation of IoT data can help improve the value of information extracted from IoT. However, existing contextualisation techniques can only handle small datasets from a modest number of IoT devices. In this paper, we propose a general-purpose architecture and related techniques for the contextualisation of IoT data. In particular, we introduce a Contextualisation-as-a-Service (ConTaaS) architecture that incorporates scalability improving techniques, as well as a proof-of-concept implementation of all these that utilises elastic cloud-based infrastructure to achieve near real-time contextualisation of IoT data. Experimental evaluations validating the efficiency of ConTaaS are also provided in this paper

    IoT Data Processing for Smart City and Semantic Web Applications

    Full text link
    The world has been experiencing rapid urbanization over the last few decades, putting a strain on existing city infrastructure such as waste management, water supply management, public transport and electricity consumption. We are also seeing increasing pollution levels in cities threatening the environment, natural resources and health conditions. However, we must realize that the real growth lies in urbanization as it provides many opportunities to individuals for better employment, healthcare and better education. However, it is imperative to limit the ill effects of rapid urbanization through integrated action plans to enable the development of growing cities. This gave rise to the concept of a smart city in which all available information associated with a city will be utilized systematically for better city management. The proposed system architecture is divided in subsystems and is discussed in individual chapters. The first chapter introduces and gives overview to the reader of the complete system architecture. The second chapter discusses the data monitoring system and data lake system based on the oneM2M standards. DMS employs oneM2M as a middleware layer to achieve interoperability, and DLS uses a multi-tenant architecture with multiple logical databases, enabling efficient and reliable data management. The third chapter discusses energy monitoring and electric vehicle charging systems developed to illustrate the applicability of the oneM2M standards. The fourth chapter discusses the Data Exchange System based on the Indian Urban Data Exchange framework. DES uses IUDX standard data schema and open APIs to avoid data silos and enable secure data sharing. The fifth chapter discusses the 5D-IoT framework that provides uniform data quality assessment of sensor data with meaningful data descriptions

    Semantic traffic sensor data: The TRAFAIR experience

    Get PDF
    Modern cities face pressing problems with transportation systems including, but not limited to, traffic congestion, safety, health, and pollution. To tackle them, public administrations have implemented roadside infrastructures such as cameras and sensors to collect data about environmental and traffic conditions. In the case of traffic sensor data not only the real-time data are essential, but also historical values need to be preserved and published. When real-time and historical data of smart cities become available, everyone can join an evidence-based debate on the city''s future evolution. The TRAFAIR (Understanding Traffic Flows to Improve Air Quality) project seeks to understand how traffic affects urban air quality. The project develops a platform to provide real-time and predicted values on air quality in several cities in Europe, encompassing tasks such as the deployment of low-cost air quality sensors, data collection and integration, modeling and prediction, the publication of open data, and the development of applications for end-users and public administrations. This paper explicitly focuses on the modeling and semantic annotation of traffic data. We present the tools and techniques used in the project and validate our strategies for data modeling and its semantic enrichment over two cities: Modena (Italy) and Zaragoza (Spain). An experimental evaluation shows that our approach to publish Linked Data is effective

    Providing energy efficiency location-based strategies for buildings using linked open data

    Get PDF
    Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.Climate change is a main concern for humanity from the ending of 20th century. To improve and take care of our environment, a set of measures has been developed to monitor, manage, reduce consumption and raise efficiency of buildings, including the integration of renewable energies and the implementation of passive measures like the improvement of the building envelope. Complex methodologies are used in order to achieve these objectives. Using different tools and data translating is needed, and the loss of accuracy from the detailed input information is most of the times unavoidable. Moreover, including these measures in the development of a project have become a try and error process involving building characteristics, location data and energy efficiency measures. The raising of new technologies, capable of dealing with location-based data and semantics to relate and structure information in a machine readable way, may allow us to provide a set of technical measures to improve energy efficiency in an accessible, open, understandable and easy way from a few data about location and building characteristics. This work tries to define a model and its necessary and sufficient set of data. Its application will provide customized strategies acting as pre-feasibility constraints to help buildings achieve their energy efficiency objectives from its very conception. The model intends to be useful for non-expert users who want to know about their energy savings possibilities, and for professionals willing to get a sustainable starting point for their projects

    Semantic Traffic Sensor Data: The TRAFAIR Experience

    Get PDF
    Modern cities face pressing problems with transportation systems including, but not limited to, traffic congestion, safety, health, and pollution. To tackle them, public administrations have implemented roadside infrastructures such as cameras and sensors to collect data about environmental and traffic conditions. In the case of traffic sensor data not only the real-time data are essential, but also historical values need to be preserved and published. When real-time and historical data of smart cities become available, everyone can join an evidence-based debate on the city’s future evolution. The TRAFAIR (Understanding Traffic Flows to Improve Air Quality) project seeks to understand how traffic affects urban air quality. The project develops a platform to provide real-time and predicted values on air quality in several cities in Europe, encompassing tasks such as the deployment of low-cost air quality sensors, data collection and integration, modeling and prediction, the publication of open data, and the development of applications for end-users and public administrations. This paper explicitly focuses on the modeling and semantic annotation of traffic data. We present the tools and techniques used in the project and validate our strategies for data modeling and its semantic enrichment over two cities: Modena (Italy) and Zaragoza (Spain). An experimental evaluation shows that our approach to publish Linked Data is effective
    corecore