5,141 research outputs found

    The "MIND" Scalable PIM Architecture

    Get PDF
    MIND (Memory, Intelligence, and Network Device) is an advanced parallel computer architecture for high performance computing and scalable embedded processing. It is a Processor-in-Memory (PIM) architecture integrating both DRAM bit cells and CMOS logic devices on the same silicon die. MIND is multicore with multiple memory/processor nodes on each chip and supports global shared memory across systems of MIND components. MIND is distinguished from other PIM architectures in that it incorporates mechanisms for efficient support of a global parallel execution model based on the semantics of message-driven multithreaded split-transaction processing. MIND is designed to operate either in conjunction with other conventional microprocessors or in standalone arrays of like devices. It also incorporates mechanisms for fault tolerance, real time execution, and active power management. This paper describes the major elements and operational methods of the MIND architecture

    Test exploration and validation using transaction level models

    Get PDF
    The complexity of the test infrastructure and test strategies in systems-on-chip approaches the complexity of the functional design space. This paper presents test design space exploration and validation of test strategies and schedules using transaction level models (TLMs). Since many aspects of testing involve the transfer of a significant amount of test stimuli and responses, the communication-centric view of TLMs suits this purpose exceptionally wel

    On-Chip Transparent Wire Pipelining (invited paper)

    Get PDF
    Wire pipelining has been proposed as a viable mean to break the discrepancy between decreasing gate delays and increasing wire delays in deep-submicron technologies. Far from being a straightforwardly applicable technique, this methodology requires a number of design modifications in order to insert it seamlessly in the current design flow. In this paper we briefly survey the methods presented by other researchers in the field and then we thoroughly analyze the solutions we recently proposed, ranging from system-level wire pipelining to physical design aspects

    LEGaTO: first steps towards energy-efficient toolset for heterogeneous computing

    Get PDF
    LEGaTO is a three-year EU H2020 project which started in December 2017. The LEGaTO project will leverage task-based programming models to provide a software ecosystem for Made-in-Europe heterogeneous hardware composed of CPUs, GPUs, FPGAs and dataflow engines. The aim is to attain one order of magnitude energy savings from the edge to the converged cloud/HPC.Peer ReviewedPostprint (author's final draft

    Advanced Timing and Synchronization Methodologies for Digital VLSI Integrated Circuits

    Get PDF
    This dissertation addresses timing and synchronization methodologies that are critical to the design, analysis and optimization of high-performance, integrated digital VLSI systems. As process sizes shrink and design complexities increase, achieving timing closure for digital VLSI circuits becomes a significant bottleneck in the integrated circuit design flow. Circuit designers are motivated to investigate and employ alternative methods to satisfy the timing and physical design performance targets. Such novel methods for the timing and synchronization of complex circuitry are developed in this dissertation and analyzed for performance and applicability.Mainstream integrated circuit design flow is normally tuned for zero clock skew, edge-triggered circuit design. Non-zero clock skew or multi-phase clock synchronization is seldom used because the lack of design automation tools increases the length and cost of the design cycle. For similar reasons, level-sensitive registers have not become an industry standard despite their superior size, speed and power consumption characteristics compared to conventional edge-triggered flip-flops.In this dissertation, novel design and analysis techniques that fully automate the design and analysis of non-zero clock skew circuits are presented. Clock skew scheduling of both edge-triggered and level-sensitive circuits are investigated in order to exploit maximum circuit performances. The effects of multi-phase clocking on non-zero clock skew, level-sensitive circuits are investigated leading to advanced synchronization methodologies. Improvements in the scalability of the computational timing analysis process with clock skew scheduling are explored through partitioning and parallelization.The integration of the proposed design and analysis methods to the physical design flow of integrated circuits synchronized with a next-generation clocking technology-resonant rotary clocking technology-is also presented. Based on the design and analysis methods presented in this dissertation, a computer-aided design tool for the design of rotary clock synchronized integrated circuits is developed

    Enhancing Power Efficient Design Techniques in Deep Submicron Era

    Get PDF
    Excessive power dissipation has been one of the major bottlenecks for design and manufacture in the past couple of decades. Power efficient design has become more and more challenging when technology scales down to the deep submicron era that features the dominance of leakage, the manufacture variation, the on-chip temperature variation and higher reliability requirements, among others. Most of the computer aided design (CAD) tools and algorithms currently used in industry were developed in the pre deep submicron era and did not consider the new features explicitly and adequately. Recent research advances in deep submicron design, such as the mechanisms of leakage, the source and characterization of manufacture variation, the cause and models of on-chip temperature variation, provide us the opportunity to incorporate these important issues in power efficient design. We explore this opportunity in this dissertation by demonstrating that significant power reduction can be achieved with only minor modification to the existing CAD tools and algorithms. First, we consider peak current, which has become critical for circuit's reliability in deep submicron design. Traditional low power design techniques focus on the reduction of average power. We propose to reduce peak current while keeping the overhead on average power as small as possible. Second, dual Vt technique and gate sizing have been used simultaneously for leakage savings. However, this approach becomes less effective in deep submicron design. We propose to use the newly developed process-induced mechanical stress to enhance its performance. Finally, in deep submicron design, the impact of on-chip temperature variation on leakage and performance becomes more and more significant. We propose a temperature-aware dual Vt approach to alleviate hot spots and achieve further leakage reduction. We also consider this leakage-temperature dependency in the dynamic voltage scaling approach and discover that a commonly accepted result is incorrect for the current technology. We conduct extensive experiments with popular design benchmarks, using the latest industry CAD tools and design libraries. The results show that our proposed enhancements are promising in power saving and are practical to solve the low power design challenges in deep submicron era

    Science and Applications Space Platform (SASP) End-to-End Data System Study

    Get PDF
    The capability of present technology and the Tracking and Data Relay Satellite System (TDRSS) to accommodate Science and Applications Space Platforms (SASP) payload user's requirements, maximum service to the user through optimization of the SASP Onboard Command and Data Management System, and the ability and availability of new technology to accommodate the evolution of SASP payloads were assessed. Key technology items identified to accommodate payloads on a SASP were onboard storage devices, multiplexers, and onboard data processors. The primary driver is the limited access to TDRSS for single access channels due to sharing with all the low Earth orbit spacecraft plus shuttle. Advantages of onboard data processing include long term storage of processed data until TRDSS is accessible, thus reducing the loss of data, eliminating large data processing tasks at the ground stations, and providing a more timely access to the data
    • 

    corecore