321,407 research outputs found

    Achieving Ultra-Reliable Low-Latency Communication (URLLC) in Next-Generation Cellular Networks with Programmable Data Planes

    Full text link
    Recent advancements in wireless technologies towards the next-generation cellular networks have brought a new era that made it possible to apply cellular technology on traditionally-wired networks with tighter requirements, such as industrial networks. The next-generation cellular technologies (e.g., 5G and Beyond) introduce the concept of ultra-reliable low-latency communications (URLLC). This thesis presents a Software-Defined Networking (SDN) architecture with programmable data planes for the next-generation cellular networks to achieve URLLC. Our design deploys programmable switches between the cellular core and Radio Access Networks (RAN) to monitor and modify data traffic at the line speed. We introduce the concept of \textit{intra-cellular optimization}, a relaxation in cellular networks to allow pre-authorized in-network devices to communicate without being required to signal the core network. We also present a control structure, Unified Control Plane (UCP), containing a novel Ethernet Layer control protocol and an adapted version of link-state routing information distribution among the programmable switches. Our implementation uses P4 with an 5G implementation (Open5Gs) and a UE/RAN simulator. We implement a Python simulator to evaluate the performance of our system on multi-switch topologies by simulating the switch behavior. Our evaluation indicates latency reduction up to 2x with \textit{intra-cellular optimization} compared to the conventional architecture. We show that our design has a ten-millisecond level of control latency, and achieves fine-grained network security and monitoring.Comment: M.Sc. Thesis, Bogazici University, 202

    Mobility-based predictive call admission control and resource reservation for next-generation mobile communications networks.

    Get PDF
    Recently, the need for wireless and mobile communications has grown tremendously and it is expected that the number of users to be supported will increase with high rates in the next few years. Not only the number of users, but also the required bandwidth to support each user is supposed to increase especially with the deploying of the multimedia and the real time applications. This makes the researchers in the filed of mobile and wireless communications more interested in finding efficient solutions to solve the limitations of the available natural radio resources. One of the important things to be considered in the wireless mobile environment is that the user can move from one location to another when there is an ingoing call. Resource reservation ( RR ) schemes are used to reserve the bandwidth ( BW ) required for the handoff calls. This will enable the user to continue his/her call while he/she is moving. Also, call admission control ( CAC ) schemes are used as a provisioning strategy to limit the number of call connections into the network in order to reduce the network congestion and the call dropping. The problem of CAC and RR is one of the most challenging problems in the wireless mobile networks. Also, in the fourth generation ( 4G ) of mobile communication networks, many types of different mobile systems such as wireless local area networks ( WLAN s) and cellular networks will be integrated. The 4G mobile networks will support a broad range of multimedia services with high quality of service.New Call demission control and resource reservation techniques are needed to support the new 4G systems. Our research aims to solve the problems of Call Admission Control (CAC), and resource reservation (RR) in next-generation cellular networks and in the fourth generation (4G) wireless heterogeneous networks. In this dissertation, the problem of CAC and RR in wireless mobile networks is addressed in detail for two different architectures of mobile networks: (1) cellular networks, and (2) wireless heterogeneous networks (WHNs) which integrate cellular networks and wireless local area networks (WLANs). We have designed, implemented, and evaluated new mobility-based predictive call admission control and resource reservation techniques for the next-generation cellular networks and for the 4G wireless heterogeneous networks. These techniques are based on generating the mobility models of the mobile users using one-dimensional and multidimensional sequence mining techniques that have been designed for the wireless mobile environment. The main goal of our techniques is to reduce the call dropping probability and the call blocking probability, and to maximize the bandwidth utilization n the mobile networks. By analyzing the previous movements of the mobile users, we generate local and global mobility profiles for the mobile users, which are utilized effectively in prediction of the future path of the mobile user. Extensive simulation was used to analyze and study the performance of these techniques and to compare its performance with other techniques. Simulation results show that the proposed techniques have a significantly enhanced performance which is comparable to the benchmark techniques

    Statistical multiplexing and connection admission control in ATM networks

    Get PDF
    Asynchronous Transfer Mode (ATM) technology is widely employed for the transport of network traffic, and has the potential to be the base technology for the next generation of global communications. Connection Admission Control (CAC) is the effective traffic control mechanism which is necessary in ATM networks in order to avoid possible congestion at each network node and to achieve the Quality-of-Service (QoS) requested by each connection. CAC determines whether or not the network should accept a new connection. A new connection will only be accepted if the network has sufficient resources to meet its QoS requirements without affecting the QoS commitments already made by the network for existing connections. The design of a high-performance CAC is based on an in-depth understanding of the statistical characteristics of the traffic sources

    An Open RAN Framework for the Dynamic Control of 5G Service Level Agreements

    Full text link
    The heterogeneity of use cases that next-generation wireless systems need to support calls for flexible and programmable networks that can autonomously adapt to the application requirements. Specifically, traffic flows that support critical applications (e.g., vehicular control or safety communications) often come with a requirement in terms of guaranteed performance. At the same time, others are more elastic and can adapt to the resources made available by the network (e.g., video streaming). To this end, the Open Radio Access Network (RAN) paradigm is seen as an enabler of dynamic control and adaptation of the protocol stack of 3rd Generation Partnership Project (3GPP) networks in the 5th Generation (5G) and beyond. Through its embodiment in the O-RAN alliance specifications, it introduces the Ran Intelligent Controllers (RICs), which enable closed-loop control, leveraging a rich set of RAN Key Performance Measurements (KPMs) to build a representation of the network and enforcing dynamic control through the configuration of 3GPP-defined stack parameters. In this paper, we leverage the Open RAN closed-loop control capabilities to design, implement, and evaluate multiple data-driven and dynamic Service Level Agreement (SLA) enforcement policies, capable of adapting the RAN semi-persistent scheduling patterns to match users requirements. To do so, we implement semi-persistent scheduling capabilities in the OpenAirInterface (OAI) 5G stack, as well as an easily extensible and customizable version of the Open RAN E2 interface that connects the OAI base stations to the near-real-time RIC. We deploy and test our framework on Colosseum, a large-scale hardware-in-the-loop channel emulator. Results confirm the effectiveness of the proposed Open RAN-based solution in managing SLA in near-real-time

    On the Tradeoff between Energy Harvesting and Caching in Wireless Networks

    Full text link
    Self-powered, energy harvesting small cell base stations (SBS) are expected to be an integral part of next-generation wireless networks. However, due to uncertainties in harvested energy, it is necessary to adopt energy efficient power control schemes to reduce an SBSs' energy consumption and thus ensure quality-of-service (QoS) for users. Such energy-efficient design can also be done via the use of content caching which reduces the usage of the capacity-limited SBS backhaul. of popular content at SBS can also prove beneficial in this regard by reducing the backhaul usage. In this paper, an online energy efficient power control scheme is developed for an energy harvesting SBS equipped with a wireless backhaul and local storage. In our model, energy arrivals are assumed to be Poisson distributed and the popularity distribution of requested content is modeled using Zipf's law. The power control problem is formulated as a (discounted) infinite horizon dynamic programming problem and solved numerically using the value iteration algorithm. Using simulations, we provide valuable insights on the impact of energy harvesting and caching on the energy and sum-throughput performance of the SBS as the network size is varied. Our results also show that the size of cache and energy harvesting equipment at the SBS can be traded off, while still meeting the desired system performance.Comment: To be presented at the IEEE International Conference on Communications (ICC), London, U.K., 201

    Maximizing Infrastructure Providers' Revenue Through Network Slicing in 5G

    Get PDF
    Adapting to recent trends in mobile communications towards 5G, infrastructure owners are gradually modifying their systems for supporting the network programmability paradigm and for participating in the slice market (i.e., dynamic leasing of virtual network slices to service providers). Two-fold are the advantages offered by this upgrade: i) enabling next generation services, and ii) allowing new profit opportunities. Many efforts exist already in the field of admission control, resource allocation and pricing for virtualized networks. Most of the 5G-related research efforts focus in technological enhancements for making existing solutions compliant to the strict requirements of next generation networks. On the other hand, the profit opportunities associated to the slice market also need to be reconsidered in order to assess the feasibility of this new business model. Nonetheless, when economic aspects are studied in the literature, technical constraints are generally oversimplified. For this reason, in this work, we propose an admission control mechanism for network slicing that respects 5G timeliness while maximizing network infrastructure providers' revenue, reducing expenditures and providing a fair slice provision to competing service providers. To this aim, we design an admission policy of reduced complexity based on bid selection, we study the optimal strategy in different circumstances (i.e., pool size of available resources, service providers' strategy and trafic load), analyze the performance metrics and compare the proposal against reference approaches. Finally, we explore the case where infrastructure providers lease network slices either on-demand or on a periodic time basis and provide a performance comparison between the two approaches. Our analysis shows that the proposed approach outperforms existing solutions, especially in the case of infrastructures with large pool of resources and under intense trafic conditions.Peer ReviewedPostprint (published version

    Cooperative Communications in Smart Grid Networks

    Get PDF
    The conventional grid system is facing great challenges due to the fast growing electricity demand throughout the world. The smart grid has emerged as the next generation of grid power systems, aimed at providing secure, reliable and low cost power generation, distribution and consumption intelligently. The smart grid communication system within the smart grid network is of fundamental importance to support data transfer and information exchange within the smart grid system. The National Institute of Standards and Technology has identified wireless communications as an important networking technology to be employed in power systems. The reliability of the data transmission is essential for the smart grid system to achieve high accuracy for the power generation, distribution and consumption. In this thesis, we investigate cooperative communications to improve transmission reliability in smart grid networks. Although many issues within cooperative communication have already been addressed, there is a lack of research efforts on cooperative communication for the wireless smart grid communication system which has its own network features and different transmission requirements. In our research, the smart grid communication networks were studied, and cooperative communications in smart grid networks were analysed. The research work mainly focuses on three problems: the application of cooperative relay communications to modern smart grid communication networks, the cooperative relay-based network development strategy, and the optimization of cooperative relay communication for smart grids. For the first problem, the application of cooperative relay communication to a home area network (HAN) of smart grid system is presented. The wireless transmission reliability is identified as the issue of most concern in wireless smart grid networks. We model the smart grid HAN as a wireless mesh network that deploys cooperative relay communication to enhance the transmission reliability. We apply cooperative relay communication to provide a user equipment selection scheme to effectively improve the transmission quality between the electricity equipment and the smart meter. For the second problem, we address the network design and planning problem in the smart grid HAN. The outage performance of direct transmission and cooperative transmission was analysed. Based on the reliability performance metric that we have defined, we propose a HAN deployment strategy to improve the reliability of the transmission links. The proposed HAN deployment strategy is tested in a home environment. The smart meter location optimization problem has also been identified and solved. The simulation results show that our proposed network deployment strategy can guarantee high reliability for smart grid communications in home area networks. For the third problem, the research focuses on the optimization of the cooperative relay transmission regarding the power allocation and relay selection in the neighbourhood area network (NAN) of the smart grid system. Owing to the complexity of the joint optimization problem, reduced-complexity algorithms have been proposed to minimize the transmission power, at the same time, guarantee the link reliability of the cooperative communications. The optimization problem of power allocation and relay selection is formulated and treated as a combinatorial optimization problem. Two sub-optimal solutions that simplify the optimization process are devised. Based on the solutions, two different algorithms are proposed to solve the optimization problem with reduced complexity. The simulation results demonstrate that both two algorithms have good performance on minimizing the total transmission power while guaranteeing the transmission reliability for the wireless smart grid communication system. In this thesis, we consider cooperative communications in a smart grid scenario. We minimize the outage probability and thus improve the reliability of the communications taking place in the smart grid by considering the optimization problem of power control, relay selection and the network deployment problem. Although similar problems might have been well investigated in conventional wireless networks, such as the cellular network, little research has been conducted in smart grid communications. We apply new optimization techniques and propose solutions for these optimization problems specifically tailored for smart grid communications. We demonstrate that, compared to naively applying the algorithms suitable for conventional communications to the smart gird scenario, our proposed algorithm significantly improves the performance of smart grid communications. Finally, we note that, in future work, it will be possible to consider more complex smart grid communications system models. For example, it is worthwhile considering hetregeneous smart communications by combining HAN and wide area networks (WAN). In addition, instead of assuming that all communications have the equal priority, as in this thesis, more comprehensive analysis of the priority of the smart grid communication can be applied to the research
    • …
    corecore