228 research outputs found

    Performance and complexity of tunable sparse network coding with gradual growing tuning functions over wireless networks

    Get PDF
    Random Linear Network Coding (RLNC) has been shown to be a technique with several benefits, in particular when applied over wireless mesh networks, since it provides robustness against packet losses. On the other hand, Tunable Sparse Network Coding (TSNC) is a promising concept, which leverages a trade-off between computational complexity and goodput. An optimal density tuning function has not been found yet, due to the lack of a closed-form expression that links density, performance and computational cost. In addition, it would be difficult to implement, due to the feedback delay. In this work we propose two novel tuning functions with a lower computational cost, which do not highly increase the overhead in terms of the transmission of linear dependent packets compared with RLNC and previous proposals. Furthermore, we also broaden previous studies of TSNC techniques, by means of an extensive simulation campaign carried out using the ns-3 simulator. This brings the possibility of assessing their performance over more realistic scenarios, e.g considering MAC effects and delays. We exploit this implementation to analyze the impact of the feedback sent by the decoder. The results, compared to RLNC, show a reduction of 3.5 times in the number of operations without jeopardizing the network performance, in terms of goodput, even when we consider the delay effect on the feedback sent by the decoderThis work has been supported by the Spanish Government (Ministerio de Economía y Competitividad, Fondo Europeo de Desarrollo Regional, FEDER) by means of the projects COSAIF, “Connectivity as a Service: Access for the Internet of the Future” (TEC2012-38754-C02-01), and ADVICE (TEC2015-71329-C2-1-R). This work was also financed in part by the TuneSCode project (No. DFF 1335-00125) granted by the Danish Council for Independent Research

    Resource Tuned Optimal Random Network Coding for Single Hop Multicast future 5G Networks

    Get PDF
    Optimal random network coding is reduced complexity in computation of coding coefficients, computation of encoded packets and coefficients are such that minimal transmission bandwidth is enough to transmit coding coefficient to the destinations and decoding process can be carried out as soon as encoded packets are started being received at the destination and decoding process has lower computational complexity. But in traditional random network coding, decoding process is possible only after receiving all encoded packets at receiving nodes. Optimal random network coding also reduces the cost of computation. In this research work, coding coefficient matrix size is determined by the size of layers which defines the number of symbols or packets being involved in coding process. Coding coefficient matrix elements are defined such that it has minimal operations of addition and multiplication during coding and decoding process reducing computational complexity by introducing sparseness in coding coefficients and partial decoding is also possible with the given coding coefficient matrix with systematic sparseness in coding coefficients resulting lower triangular coding coefficients matrix. For the optimal utility of computational resources, depending upon the computational resources unoccupied such as memory available resources budget tuned windowing size is used to define the size of the coefficient matrix

    On Tunable Sparse Network Coding in Commercial Devices for Networks and Filesystems

    Get PDF

    Hardware-Conscious Wireless Communication System Design

    Get PDF
    The work at hand is a selection of topics in efficient wireless communication system design, with topics logically divided into two groups.One group can be described as hardware designs conscious of their possibilities and limitations. In other words, it is about hardware that chooses its configuration and properties depending on the performance that needs to be delivered and the influence of external factors, with the goal of keeping the energy consumption as low as possible. Design parameters that trade off power with complexity are identified for analog, mixed signal and digital circuits, and implications of these tradeoffs are analyzed in detail. An analog front end and an LDPC channel decoder that adapt their parameters to the environment (e.g. fluctuating power level due to fading) are proposed, and it is analyzed how much power/energy these environment-adaptive structures save compared to non-adaptive designs made for the worst-case scenario. Additionally, the impact of ADC bit resolution on the energy efficiency of a massive MIMO system is examined in detail, with the goal of finding bit resolutions that maximize the energy efficiency under various system setups.In another group of themes, one can recognize systems where the system architect was conscious of fundamental limitations stemming from hardware.Put in another way, in these designs there is no attempt of tweaking or tuning the hardware. On the contrary, system design is performed so as to work around an existing and unchangeable hardware limitation. As a workaround for the problematic centralized topology, a massive MIMO base station based on the daisy chain topology is proposed and a method for signal processing tailored to the daisy chain setup is designed. In another example, a large group of cooperating relays is split into several smaller groups, each cooperatively performing relaying independently of the others. As cooperation consumes resources (such as bandwidth), splitting the system into smaller, independent cooperative parts helps save resources and is again an example of a workaround for an inherent limitation.From the analyses performed in this thesis, promising observations about hardware consciousness can be made. Adapting the structure of a hardware block to the environment can bring massive savings in energy, and simple workarounds prove to perform almost as good as the inherently limited designs, but with the limitation being successfully bypassed. As a general observation, it can be concluded that hardware consciousness pays off

    Next-generation High-Capacity Communications with High Flexibility, Efficiency, and Reliability

    Get PDF
    The objective of this dissertation is to address the flexibility, efficiency and reliability in high-capacity heterogeneous communication systems. We will experimentally investigate the shaping techniques, and further extend them to more diverse and complicated scenarios, which result in more flexible systems. The scenarios include 1) entropy allocation scheme under uneven frequency response for multi-carrier system, 2) fiber-free space optics link using unipolar pairwise distribution, and 3) flexible rate passive optical network with a wide range of received optical powers. Next, we perform efficiency analysis in inter-data center and long-haul communications. We will characterize the impact of the laser linewidth, jitter tones, and the flicker noise on coherent systems with different baud rates and fiber lengths through theoretical analysis, simulation, and experimental validation. The trade-off analysis indicates the importance of setting up frequency noise power spectral density masks to qualify the transceiver laser design. Besides efficiency analysis, we will also work on efficient system architecture and algorithm design. We investigate the combined impact of various hardware impairments using proposed simplified DSP schemes in beyond 800G self-homodyne coherent system. The proposed scheme is very promising for next-generation intra-data center applications. On the other hand, to improve the data efficiency of the nonlinearity correction algorithm in broadband communication systems, we leverage the semi-supervised method and Lasso. Experimental results validate that Lasso can reduce the required pilot symbol number by exploiting the sparsity of the tap coefficients. Semi-supervised method can further enhance the system performance without introducing additional overhead. Last but not least, regarding reliability, we propose and experimentally demonstrate an ultra-reliable integrated millimeter wave and free space optics analog radio over fiber system with algorithm design. The multiple-spectra operation shows superior performance in reliability and sensitivity compared to the conventional systems, even in extreme weather conditions and strong burst interference.Ph.D

    2022 roadmap on neuromorphic computing and engineering

    Full text link
    Modern computation based on von Neumann architecture is now a mature cutting-edge science. In the von Neumann architecture, processing and memory units are implemented as separate blocks interchanging data intensively and continuously. This data transfer is responsible for a large part of the power consumption. The next generation computer technology is expected to solve problems at the exascale with 1018^{18} calculations each second. Even though these future computers will be incredibly powerful, if they are based on von Neumann type architectures, they will consume between 20 and 30 megawatts of power and will not have intrinsic physically built-in capabilities to learn or deal with complex data as our brain does. These needs can be addressed by neuromorphic computing systems which are inspired by the biological concepts of the human brain. This new generation of computers has the potential to be used for the storage and processing of large amounts of digital information with much lower power consumption than conventional processors. Among their potential future applications, an important niche is moving the control from data centers to edge devices. The aim of this roadmap is to present a snapshot of the present state of neuromorphic technology and provide an opinion on the challenges and opportunities that the future holds in the major areas of neuromorphic technology, namely materials, devices, neuromorphic circuits, neuromorphic algorithms, applications, and ethics. The roadmap is a collection of perspectives where leading researchers in the neuromorphic community provide their own view about the current state and the future challenges for each research area. We hope that this roadmap will be a useful resource by providing a concise yet comprehensive introduction to readers outside this field, for those who are just entering the field, as well as providing future perspectives for those who are well established in the neuromorphic computing community

    2022 roadmap on neuromorphic computing and engineering

    Get PDF

    Machine Learning in Digital Signal Processing for Optical Transmission Systems

    Get PDF
    The future demand for digital information will exceed the capabilities of current optical communication systems, which are approaching their limits due to component and fiber intrinsic non-linear effects. Machine learning methods are promising to find new ways of leverage the available resources and to explore new solutions. Although, some of the machine learning methods such as adaptive non-linear filtering and probabilistic modeling are not novel in the field of telecommunication, enhanced powerful architecture designs together with increasing computing power make it possible to tackle more complex problems today. The methods presented in this work apply machine learning on optical communication systems with two main contributions. First, an unsupervised learning algorithm with embedded additive white Gaussian noise (AWGN) channel and appropriate power constraint is trained end-to-end, learning a geometric constellation shape for lowest bit-error rates over amplified and unamplified links. Second, supervised machine learning methods, especially deep neural networks with and without internal cyclical connections, are investigated to combat linear and non-linear inter-symbol interference (ISI) as well as colored noise effects introduced by the components and the fiber. On high-bandwidth coherent optical transmission setups their performances and complexities are experimentally evaluated and benchmarked against conventional digital signal processing (DSP) approaches. This thesis shows how machine learning can be applied to optical communication systems. In particular, it is demonstrated that machine learning is a viable designing and DSP tool to increase the capabilities of optical communication systems

    SPINN: Synergistic Progressive Inference of Neural Networks over Device and Cloud

    Full text link
    Despite the soaring use of convolutional neural networks (CNNs) in mobile applications, uniformly sustaining high-performance inference on mobile has been elusive due to the excessive computational demands of modern CNNs and the increasing diversity of deployed devices. A popular alternative comprises offloading CNN processing to powerful cloud-based servers. Nevertheless, by relying on the cloud to produce outputs, emerging mission-critical and high-mobility applications, such as drone obstacle avoidance or interactive applications, can suffer from the dynamic connectivity conditions and the uncertain availability of the cloud. In this paper, we propose SPINN, a distributed inference system that employs synergistic device-cloud computation together with a progressive inference method to deliver fast and robust CNN inference across diverse settings. The proposed system introduces a novel scheduler that co-optimises the early-exit policy and the CNN splitting at run time, in order to adapt to dynamic conditions and meet user-defined service-level requirements. Quantitative evaluation illustrates that SPINN outperforms its state-of-the-art collaborative inference counterparts by up to 2x in achieved throughput under varying network conditions, reduces the server cost by up to 6.8x and improves accuracy by 20.7% under latency constraints, while providing robust operation under uncertain connectivity conditions and significant energy savings compared to cloud-centric execution.Comment: Accepted at the 26th Annual International Conference on Mobile Computing and Networking (MobiCom), 202
    • …
    corecore