826 research outputs found

    Performance Evaluation of CDMA Reverse Links with Imperfect Beamforming in a Multicell Environment Using a Simplied Beamforming Model

    Get PDF
    Reverse link capacity of a direct-sequence codedivision multiple-access (DS-CDMA) system in a multicell environment has been studied recently, and significant capacity improvements due to the use of beamforming have been observed. However, system performance with beamforming will be affected by several impairments, such as direction of arrival estimation errors, array perturbations, mutual coupling, and signal spatial spreads. In this paper, reverse link performance of CDMA systems with beamforming under these impairments (imperfect beamforming) is investigated. A simplified beamforming model is developed to evaluate the system performance in terms of user capacity, bit-error rates (BER), and outage probabilities. Both signalto-interference-ratio-based power control and strengthbased power control are considered in this paper. The capacity and BER degradations due to different impairments are shown, and outage probabilities under different power control schemes are examined

    Final report on the evaluation of RRM/CRRM algorithms

    Get PDF
    Deliverable public del projecte EVERESTThis deliverable provides a definition and a complete evaluation of the RRM/CRRM algorithms selected in D11 and D15, and evolved and refined on an iterative process. The evaluation will be carried out by means of simulations using the simulators provided at D07, and D14.Preprin

    EVEREST IST - 2002 - 00185 : D23 : final report

    Get PDF
    Deliverable públic del projecte europeu EVERESTThis deliverable constitutes the final report of the project IST-2002-001858 EVEREST. After its successful completion, the project presents this document that firstly summarizes the context, goal and the approach objective of the project. Then it presents a concise summary of the major goals and results, as well as highlights the most valuable lessons derived form the project work. A list of deliverables and publications is included in the annex.Postprint (published version

    Spatial channel characterization for smart antenna solutions in FDD wireless networks

    Get PDF
    This paper introduces a novel metric for determining the spatial decorrelation between the up- and down-link wireless bearers in frequency division duplex (FDD) networks. This metric has direct relevance to smart or adaptive antenna array base-station deployments in cellular networks, which are known to offer capacity enhancement when compared to fixed coverage solutions. In particular, the results presented were obtained from field trial measurement campaigns for both urban and rural scenarios, with the observations having a direct impact on the choice of down-link beamforming architecture in FDD applications. Further, it is shown that significant spatial decorrelation can occur in urban deployments for bearer separations as small as 5 MHz. Results are presented in terms of both instantaneous characteristics as well as time averaged estimates, thus facilitating the appraisal of smart antenna solutions in both packet and circuit switched network

    成層圏飛翔体通信における無線通信路及びその性能に関する研究

    Get PDF
    制度:新 ; 文部省報告番号:甲2383号 ; 学位の種類:博士(国際情報通信学) ; 授与年月日:2007/3/15 ; 早大学位記番号:新447

    Identification of Technologies for Provision of Future Aeronautical Communications

    Get PDF
    This report describes the process, findings, and recommendations of the second of three phases of the Future Communications Study (FCS) technology investigation conducted by NASA Glenn Research Center and ITT Advanced Engineering & Sciences Division for the Federal Aviation Administration (FAA). The FCS is a collaborative research effort between the FAA and Eurocontrol to address frequency congestion and spectrum depletion for safety critical airground communications. The goal of the technology investigation is to identify technologies that can support the longterm aeronautical mobile communication operating concept. A derived set of evaluation criteria traceable to the operating concept document is presented. An adaptation of the analytical hierarchy process is described and recommended for selecting candidates for detailed evaluation. Evaluations of a subset of technologies brought forward from the prescreening process are provided. Five of those are identified as candidates with the highest potential for continental airspace solutions in L-band (P-34, W-CDMA, LDL, B-VHF, and E-TDMA). Additional technologies are identified as best performers in the unique environments of remote/oceanic airspace in the satellite bands (Inmarsat SBB and a custom satellite solution) and the airport flight domain in C-band (802.16e). Details of the evaluation criteria, channel models, and the technology evaluations are provided in appendixes

    Performance analysis of SIMO space-time scheduling with convex utility function: Zero-forcing linear processing

    Get PDF
    In a multiple-antenna system, an optimized design across the link and scheduling layers is crucial toward fully exploiting the temporal and spatial dimensions of the communication channel. In this paper, based on discrete optimization techniques, we derive a novel analytical framework for designing optimal space-time scheduling algorithms with respect to general convex utility functions. We focus on the reverse link (i.e., client to base station) and assume that the mobile terminal has a single transmit antenna while the base station has nR receive antennas. In order that our proposed framework is practicable and can be implemented with a reasonable cost in a real environment, we further assume that the physical layer involves only linear-processing complexity in separating signals from different users. As an illustration of the efficacy of our proposed analytical design framework, we apply the framework to two commonly used system utility functions, namely maximal throughput and proportional fair. We then devise an optimal scheduling algorithm based on our design framework. However, in view of the formidable time complexity of the optimal algorithm, we propose two fast practical scheduling techniques, namely the greedy algorithm and the genetic algorithm (GA). The greedy algorithm, which is similar to the one widely used in 3G1X and Qualcomm high-data-rate (HDR) systems (optimal when nR = 1), exhibits significantly inferior performance when nR > 1 as compared with the optimal approach. On the other hand, the GA is quite promising in terms of performance complexity tradeoff, especially for a system with a large number of users with even a moderately large nR. As a case in point, for a system with 20 users and nR = 4, the GA is more than 36 times faster than the optimal while the performance degradation is less than 10%, making it an attractive choice in the practical implementation for real-time link scheduling.published_or_final_versio
    corecore