74,214 research outputs found

    Estimation over Communication Networks: Performance Bounds and Achievability Results

    Get PDF
    This paper considers the problem of estimation over communication networks. Suppose a sensor is taking measurements of a dynamic process. However the process needs to be estimated at a remote location connected to the sensor through a network of communication links that drop packets stochastically. We provide a framework for computing the optimal performance in the sense of expected error covariance. Using this framework we characterize the dependency of the performance on the topology of the network and the packet dropping process. For independent and memoryless packet dropping processes we find the steady-state error for some classes of networks and obtain lower and upper bounds for the performance of a general network. Finally we find a necessary and sufficient condition for the stability of the estimate error covariance for general networks with spatially correlated and Markov type dropping process. This interesting condition has a max-cut interpretation

    Dynamic Vehicle Routing for Data Gathering in Wireless Networks

    Full text link
    We consider a dynamic vehicle routing problem in wireless networks where messages arriving randomly in time and space are collected by a mobile receiver (vehicle or a collector). The collector is responsible for receiving these messages via wireless communication by dynamically adjusting its position in the network. Our goal is to utilize a combination of wireless transmission and controlled mobility to improve the delay performance in such networks. We show that the necessary and sufficient condition for the stability of such a system (in the bounded average number of messages sense) is given by {\rho}<1 where {\rho} is the average system load. We derive fundamental lower bounds for the delay in the system and develop policies that are stable for all loads {\rho}<1 and that have asymptotically optimal delay scaling. Furthermore, we extend our analysis to the case of multiple collectors in the network. We show that the combination of mobility and wireless transmission results in a delay scaling of {\Theta}(1/(1- {\rho})) with the system load {\rho} that is a factor of {\Theta}(1/(1- {\rho})) smaller than the delay scaling in the corresponding system where the collector visits each message location.Comment: 19 pages, 7 figure
    • …
    corecore