63 research outputs found

    Algorithms and structures for long adaptive echo cancellers

    Get PDF
    The main theme of this thesis is adaptive echo cancellation. Two novel independent approaches are proposed for the design of long echo cancellers with improved performance. In the first approach, we present a novel structure for bulk delay estimation in long echo cancellers which considerably reduces the amount of excess error. The miscalculation of the delay between the near-end and the far-end sections is one of the main causes of this excess error. Two analyses, based on the Least Mean Squares (LMS) algorithm, are presented where certain shapes for the transitions between the end of the near-end section and the beginning of the far-end one are considered. Transient and steady-state behaviours and convergence conditions for the proposed algorithm are studied. Comparisons between the algorithms developed for each transition are presented, and the simulation results agree well with the theoretical derivations. In the second approach, a generalised performance index is proposed for the design of the echo canceller. The proposed algorithm consists of simultaneously applying the LMS algorithm to the near-end section and the Least Mean Fourth (LMF) algorithm to the far-end section of the echo canceller. This combination results in a substantial improvement of the performance of the proposed scheme over both the LMS and other algorithms proposed for comparison. In this approach, the proposed algorithm will be henceforth called the Least Mean Mixed-Norm (LMMN) algorithm. The advantages of the LMMN algorithm over previously reported ones are two folds: it leads to a faster convergence and results in a smaller misadjustment error. Finally, the convergence properties of the LMMN algorithm are derived and the simulation results confirm the superior performance of this proposed algorithm over other well known algorithms

    Adaptation algorithms for data echo cancellation using nonquadratic cost functions

    Get PDF
    Adaptation algorithms for data echo cancellation using nonquadratic cost function

    SPARSE ECHO CANCELLATION USING VARIANTS OF LEAST MEAN FOURTH AND LEAST MEAN SQUARE ALGORITHMS

    Get PDF
    Echo cancellation is the most essential and indispensable component of telephone networks. The impulse responses of most of the networks are sparse in nature; that is, the impulse response has a small percentage of its components with a significant magnitude (large energy), while the rest are zero or small. In these sparse environments, conventional adaptive algorithms like least mean square (LMS) and normalized LMS (NLMS) show substandard and inferior performances. In this paper, the performances of the normalized least mean square (NLMS) algorithm, the normalized least mean fourth (NLMF) and the proportionate normalized least mean fourth (PNLMF) are compared for sparse echo cancellation. The sparseness of both the echo response and the input signal is exploited in this algorithm to achieve improved results at a low computational cost. The PNLMF algorithm showed better results and faster convergence in sparse and non sparse systems, but its results in sparse environments are more impressive. The NLMF algorithm shows good results in sparse environments but not in non-sparse environments. The PNLMS algorithm can be considered superior to the NLMF and NLMS algorithms with respect to the error profile. A modified algorithm, the sparse controlled modified proportionate normalized LMF (SCMPNLMF) algorithm, is proposed, and its performances are compared with the other algorithms

    Adaptive Algorithms for Intelligent Acoustic Interfaces

    Get PDF
    Modern speech communications are evolving towards a new direction which involves users in a more perceptive way. That is the immersive experience, which may be considered as the “last-mile” problem of telecommunications. One of the main feature of immersive communications is the distant-talking, i.e. the hands-free (in the broad sense) speech communications without bodyworn or tethered microphones that takes place in a multisource environment where interfering signals may degrade the communication quality and the intelligibility of the desired speech source. In order to preserve speech quality intelligent acoustic interfaces may be used. An intelligent acoustic interface may comprise multiple microphones and loudspeakers and its peculiarity is to model the acoustic channel in order to adapt to user requirements and to environment conditions. This is the reason why intelligent acoustic interfaces are based on adaptive filtering algorithms. The acoustic path modelling entails a set of problems which have to be taken into account in designing an adaptive filtering algorithm. Such problems may be basically generated by a linear or a nonlinear process and can be tackled respectively by linear or nonlinear adaptive algorithms. In this work we consider such modelling problems and we propose novel effective adaptive algorithms that allow acoustic interfaces to be robust against any interfering signals, thus preserving the perceived quality of desired speech signals. As regards linear adaptive algorithms, a class of adaptive filters based on the sparse nature of the acoustic impulse response has been recently proposed. We adopt such class of adaptive filters, named proportionate adaptive filters, and derive a general framework from which it is possible to derive any linear adaptive algorithm. Using such framework we also propose some efficient proportionate adaptive algorithms, expressly designed to tackle problems of a linear nature. On the other side, in order to address problems deriving from a nonlinear process, we propose a novel filtering model which performs a nonlinear transformations by means of functional links. Using such nonlinear model, we propose functional link adaptive filters which provide an efficient solution to the modelling of a nonlinear acoustic channel. Finally, we introduce robust filtering architectures based on adaptive combinations of filters that allow acoustic interfaces to more effectively adapt to environment conditions, thus providing a powerful mean to immersive speech communications

    Adaptive Algorithms for Intelligent Acoustic Interfaces

    Get PDF
    Modern speech communications are evolving towards a new direction which involves users in a more perceptive way. That is the immersive experience, which may be considered as the “last-mile” problem of telecommunications. One of the main feature of immersive communications is the distant-talking, i.e. the hands-free (in the broad sense) speech communications without bodyworn or tethered microphones that takes place in a multisource environment where interfering signals may degrade the communication quality and the intelligibility of the desired speech source. In order to preserve speech quality intelligent acoustic interfaces may be used. An intelligent acoustic interface may comprise multiple microphones and loudspeakers and its peculiarity is to model the acoustic channel in order to adapt to user requirements and to environment conditions. This is the reason why intelligent acoustic interfaces are based on adaptive filtering algorithms. The acoustic path modelling entails a set of problems which have to be taken into account in designing an adaptive filtering algorithm. Such problems may be basically generated by a linear or a nonlinear process and can be tackled respectively by linear or nonlinear adaptive algorithms. In this work we consider such modelling problems and we propose novel effective adaptive algorithms that allow acoustic interfaces to be robust against any interfering signals, thus preserving the perceived quality of desired speech signals. As regards linear adaptive algorithms, a class of adaptive filters based on the sparse nature of the acoustic impulse response has been recently proposed. We adopt such class of adaptive filters, named proportionate adaptive filters, and derive a general framework from which it is possible to derive any linear adaptive algorithm. Using such framework we also propose some efficient proportionate adaptive algorithms, expressly designed to tackle problems of a linear nature. On the other side, in order to address problems deriving from a nonlinear process, we propose a novel filtering model which performs a nonlinear transformations by means of functional links. Using such nonlinear model, we propose functional link adaptive filters which provide an efficient solution to the modelling of a nonlinear acoustic channel. Finally, we introduce robust filtering architectures based on adaptive combinations of filters that allow acoustic interfaces to more effectively adapt to environment conditions, thus providing a powerful mean to immersive speech communications

    Tree-Structured Nonlinear Adaptive Signal Processing

    Get PDF
    In communication systems, nonlinear adaptive filtering has become increasingly popular in a variety of applications such as channel equalization, echo cancellation and speech coding. However, existing nonlinear adaptive filters such as polynomial (truncated Volterra series) filters and multilayer perceptrons suffer from a number of problems. First, although high Order polynomials can approximate complex nonlinearities, they also train very slowly. Second, there is no systematic and efficient way to select their structure. As for multilayer perceptrons, they have a very complicated structure and train extremely slowly Motivated by the success of classification and regression trees on difficult nonlinear and nonparametfic problems, we propose the idea of a tree-structured piecewise linear adaptive filter. In the proposed method each node in a tree is associated with a linear filter restricted to a polygonal domain, and this is done in such a way that each pruned subtree is associated with a piecewise linear filter. A training sequence is used to adaptively update the filter coefficients and domains at each node, and to select the best pruned subtree and the corresponding piecewise linear filter. The tree structured approach offers several advantages. First, it makes use of standard linear adaptive filtering techniques at each node to find the corresponding Conditional linear filter. Second, it allows for efficient selection of the subtree and the corresponding piecewise linear filter of appropriate complexity. Overall, the approach is computationally efficient and conceptually simple. The tree-structured piecewise linear adaptive filter bears some similarity to classification and regression trees. But it is actually quite different from a classification and regression tree. Here the terminal nodes are not just assigned a region and a class label or a regression value, but rather represent: a linear filter with restricted domain, It is also different in that classification and regression trees are determined in a batch mode offline, whereas the tree-structured adaptive filter is determined recursively in real-time. We first develop the specific structure of a tree-structured piecewise linear adaptive filter and derive a stochastic gradient-based training algorithm. We then carry out a rigorous convergence analysis of the proposed training algorithm for the tree-structured filter. Here we show the mean-square convergence of the adaptively trained tree-structured piecewise linear filter to the optimal tree-structured piecewise linear filter. Same new techniques are developed for analyzing stochastic gradient algorithms with fixed gains and (nonstandard) dependent data. Finally, numerical experiments are performed to show the computational and performance advantages of the tree-structured piecewise linear filter over linear and polynomial filters for equalization of high frequency channels with severe intersymbol interference, echo cancellation in telephone networks and predictive coding of speech signals

    TRANSMISSION PERFORMANCE OPTIMIZATION IN FIBER-WIRELESS ACCESS NETWORKS USING MACHINE LEARNING TECHNIQUES

    Get PDF
    The objective of this dissertation is to enhance the transmission performance in the fiber-wireless access network through mitigating the vital system limitations of both analog radio over fiber (A-RoF) and digital radio over fiber (D-RoF), with machine learning techniques being systematically implemented. The first thrust is improving the spectral efficiency for the optical transmission in the D-RoF to support the delivery of the massive number of bits from digitized radio signals. Advanced digital modulation schemes like PAM8, discrete multi-tone (DMT), and probabilistic shaping are investigated and implemented, while they may introduce severe nonlinear impairments on the low-cost optical intensity-modulation-direct-detection (IMDD) based D-RoF link with a limited dynamic range. An efficient deep neural network (DNN) equalizer/decoder to mitigate the nonlinear degradation is therefore designed and experimentally verified. Besides, we design a neural network based digital predistortion (DPD) to mitigate the nonlinear impairments from the whole link, which can be integrated into a transmitter with more processing resources and power than a receiver in an access network. Another thrust is to proactively mitigate the complex interferences in radio access networks (RANs). The composition of signals from different licensed systems and unlicensed transmitters creates an unprecedently complex interference environment that cannot be solved by conventional pre-defined network planning. In response to the challenges, a proactive interference avoidance scheme using reinforcement learning is proposed and experimentally verified in a mmWave-over-fiber platform. Except for the external sources, the interference may arise internally from a local transmitter as the self-interference (SI) that occupies the same time and frequency block as the signal of interest (SOI). Different from the conventional subtraction-based SI cancellation scheme, we design an efficient dual-inputs DNN (DI-DNN) based canceller which simultaneously cancels the SI and recovers the SOI.Ph.D

    New structures and algorithms for adaptive system identification and channel equalization

    Get PDF
    The main drawback of the ADF is that it takes lot of iteration and fails to identify nonlinear systems. BAF converges fast while maintaining the same performance as ADF but its performance degrades at nonlinear conditions.In this thesis we propose an ANN, which provides better and faster converges when employed for identifying nonlinear systems. This network employs chebyschev based nonlinear inputs updated with the RLS algorithm. Through extensive computer simulation it is demonstrated that CFLANN updated with RLS is a better candidate compared to FLANN and MLP in terms of less complex structure, less number of input simple needed and does accurate identification
    corecore