5,380 research outputs found

    Using real options to select stable Middleware-induced software architectures

    Get PDF
    The requirements that force decisions towards building distributed system architectures are usually of a non-functional nature. Scalability, openness, heterogeneity, and fault-tolerance are examples of such non-functional requirements. The current trend is to build distributed systems with middleware, which provide the application developer with primitives for managing the complexity of distribution, system resources, and for realising many of the non-functional requirements. As non-functional requirements evolve, the `coupling' between the middleware and architecture becomes the focal point for understanding the stability of the distributed software system architecture in the face of change. It is hypothesised that the choice of a stable distributed software architecture depends on the choice of the underlying middleware and its flexibility in responding to future changes in non-functional requirements. Drawing on a case study that adequately represents a medium-size component-based distributed architecture, it is reported how a likely future change in scalability could impact the architectural structure of two versions, each induced with a distinct middleware: one with CORBA and the other with J2EE. An option-based model is derived to value the flexibility of the induced-architectures and to guide the selection. The hypothesis is verified to be true for the given change. The paper concludes with some observations that could stimulate future research in the area of relating requirements to software architectures

    A Highly Available Cluster of Web Servers with Increased Storage Capacity

    Get PDF
    Ponencias de las Decimoséptimas Jornadas de Paralelismo de la Universidad de Castilla-La Mancha celebradas el 18,19 y 20 de septiembre de 2006 en AlbaceteWeb servers scalability has been traditionally solved by improving software elements or increasing hardware resources of the server machine. Another approach has been the usage of distributed architectures. In such architectures, usually, file al- location strategy has been either full replication or full distribution. In previous works we have showed that partial replication offers a good balance between storage capacity and reliability. It offers much higher storage capacity while reliability may be kept at an equivalent level of that from fully replicated solutions. In this paper we present the architectural details of Web cluster solutions adapted to partial replication. We also show that partial replication does not imply a penalty in performance over classical fully replicated architectures. For evaluation purposes we have used a simulation model under the OMNeT++ framework and we use mean service time as a performance comparison metric.Publicad
    • …
    corecore