1,160 research outputs found

    Supporting Large Scale Communication Systems on Infrastructureless Networks Composed of Commodity Mobile Devices: Practicality, Scalability, and Security.

    Full text link
    Infrastructureless Delay Tolerant Networks (DTNs) composed of commodity mobile devices have the potential to support communication applications resistant to blocking and censorship, as well as certain types of surveillance. In this thesis we study the utility, practicality, robustness, and security of these networks. We collected two sets of wireless connectivity traces of commodity mobile devices with different granularity and scales. The first dataset is collected through active installation of measurement software on volunteer users' own smartphones, involving 111 users of a DTN microblogging application that we developed. The second dataset is collected through passive observation of WiFi association events on a university campus, involving 119,055 mobile devices. Simulation results show consistent message delivery performances of the two datasets. Using an epidemic flooding protocol, the large network achieves an average delivery rate of 0.71 in 24 hours and a median delivery delay of 10.9 hours. We show that this performance is appropriate for sharing information that is not time sensitive, e.g., blogs and photos. We also show that using an energy efficient variant of the epidemic flooding protocol, even the large network can support text messages while only consuming 13.7% of a typical smartphone battery in 14 hours. We found that the network delivery rate and delay are robust to denial-of-service and censorship attacks. Attacks that randomly remove 90% of the network participants only reduce delivery rates by less than 10%. Even when subjected to targeted attacks, the network suffered a less than 10% decrease in delivery rate when 40% of its participants were removed. Although structurally robust, the openness of the proposed network introduces numerous security concerns. The Sybil attack, in which a malicious node poses as many identities in order to gain disproportionate influence, is especially dangerous as it breaks the assumption underlying majority voting. Many defenses based on spatial variability of wireless channels exist, and we extend them to be practical for ad hoc networks of commodity 802.11 devices without mutual trust. We present the Mason test, which uses two efficient methods for separating valid channel measurement results of behaving nodes from those falsified by malicious participants.PhDElectrical Engineering: SystemsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/120779/1/liuyue_1.pd

    Enabling Censorship Tolerant Networking

    Get PDF
    Billions of people in the world live under heavy information censorship. We propose a new class of delay tolerant network (DTN), known as a censorship tolerant network (CTN), to counter the growing practice of Internet-based censorship. CTNs should provide strict guarantees on the privacy of both information shared within the network and the identities of network participants. CTN software needs to be publicly available as open source software and run on personal mobile devices with real-world computational, storage, and energy constraints. We show that these simple assumptions and system constraints have a non-obvious impact on the design and implementation of CTNs, and serve to differentiate our system design from previous work. We design data routing within a CTN using a new paradigm: one where nodes operate selfishly to maximize their own utility, make decisions based only on their own observations, and only communicate with nodes they trust. We introduce the Laissez-faire framework, an incentivized approach to CTN routing. Laissez-faire does not mandate any specific routing protocol, but requires that each node implement tit-for-tat by keeping track of the data exchanged with other trusted nodes. We propose several strategies for valuing and retrieving content within a CTN. We build a prototype BlackBerry implementation and conduct both controlled lab and field trials, and show how each strategy adapts to different network conditions. We further demonstrate that, unlike existing approaches to routing, Laissez-faire prevents free-riding. We build an efficient and reliable data transport protocol on top of the Short Message Service (SMS) to serve a control channel for the CTN. We conduct a series of experiments to characterise SMS behaviour under bursty, unconventional workloads. This study examines how variables such as the transmission order, delay between transmissions, the network interface used, and the time-of-day affect the service. We present the design and implementation of our transport protocol. We show that by adapting to the unique channel conditions of SMS we can reduce message overheads by as much as 50\% and increase data throughput by as much as 545% over the approach used by existing applications. A CTN's dependency on opportunistic communication imposes a significant burden on smartphone energy resources. We conduct a large-scale user study to measure the energy consumption characteristics of 20100 smartphone users. Our dataset is two orders of magnitude larger than any previous work. We use this dataset to build the Energy Emulation Toolkit (EET) that allows developers to evaluate the energy consumption requirements of their applications against real users' energy traces. The EET computes the successful execution rate of energy-intensive applications across all users, specific devices, and specific smartphone user-types. We also consider active adaptation to energy constraints. By classifying smartphone users based on their charging characteristics we demonstrate that energy level can be predicted within 72% accuracy a full day in advance, and through an Energy Management Oracle energy intensive applications, such as CTNs, can adapt their execution to maintain the operation of the host device

    Non-Hierarchical Networks for Censorship-Resistant Personal Communication.

    Full text link
    The Internet promises widespread access to the world’s collective information and fast communication among people, but common government censorship and spying undermines this potential. This censorship is facilitated by the Internet’s hierarchical structure. Most traffic flows through routers owned by a small number of ISPs, who can be secretly coerced into aiding such efforts. Traditional crypographic defenses are confusing to common users. This thesis advocates direct removal of the underlying heirarchical infrastructure instead, replacing it with non-hierarchical networks. These networks lack such chokepoints, instead requiring would-be censors to control a substantial fraction of the participating devices—an expensive proposition. We take four steps towards the development of practical non-hierarchical networks. (1) We first describe Whisper, a non-hierarchical mobile ad hoc network (MANET) architecture for personal communication among friends and family that resists censorship and surveillance. At its core are two novel techniques, an efficient routing scheme based on the predictability of human locations anda variant of onion-routing suitable for decentralized MANETs. (2) We describe the design and implementation of Shout, a MANET architecture for censorship-resistant, Twitter-like public microblogging. (3) We describe the Mason test, amethod used to detect Sybil attacks in ad hoc networks in which trusted authorities are not available. (4) We characterize and model the aggregate behavior of Twitter users to enable simulation-based study of systems like Shout. We use our characterization of the retweet graph to analyze a novel spammer detection technique for Shout.PhDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/107314/1/drbild_1.pd

    Trade-offs between Distributed Ledger Technology Characteristics

    Get PDF
    When developing peer-to-peer applications on distributed ledger technology (DLT), a crucial decision is the selection of a suitable DLT design (e.g., Ethereum), because it is hard to change the underlying DLT design post hoc. To facilitate the selection of suitable DLT designs, we review DLT characteristics and identify trade-offs between them. Furthermore, we assess how DLT designs account for these trade-offs and we develop archetypes for DLT designs that cater to specific requirements of applications on DLT. The main purpose of our article is to introduce scientific and practical audiences to the intricacies of DLT designs and to support development of viable applications on DLT

    Towards practicalization of blockchain-based decentralized applications

    Get PDF
    Blockchain can be defined as an immutable ledger for recording transactions, maintained in a distributed network of mutually untrusting peers. Blockchain technology has been widely applied to various fields beyond its initial usage of cryptocurrency. However, blockchain itself is insufficient to meet all the desired security or efficiency requirements for diversified application scenarios. This dissertation focuses on two core functionalities that blockchain provides, i.e., robust storage and reliable computation. Three concrete application scenarios including Internet of Things (IoT), cybersecurity management (CSM), and peer-to-peer (P2P) content delivery network (CDN) are utilized to elaborate the general design principles for these two main functionalities. Among them, the IoT and CSM applications involve the design of blockchain-based robust storage and management while the P2P CDN requires reliable computation. Such general design principles derived from disparate application scenarios have the potential to realize practicalization of many other blockchain-enabled decentralized applications. In the IoT application, blockchain-based decentralized data management is capable of handling faulty nodes, as designed in the cybersecurity application. But an important issue lies in the interaction between external network and blockchain network, i.e., external clients must rely on a relay node to communicate with the full nodes in the blockchain. Compromization of such relay nodes may result in a security breach and even a blockage of IoT sensors from the network. Therefore, a censorship-resistant blockchain-based decentralized IoT management system is proposed. Experimental results from proof-of-concept implementation and deployment in a real distributed environment show the feasibility and effectiveness in achieving censorship resistance. The CSM application incorporates blockchain to provide robust storage of historical cybersecurity data so that with a certain level of cyber intelligence, a defender can determine if a network has been compromised and to what extent. The CSM functions can be categorized into three classes: Network-centric (N-CSM), Tools-centric (T-CSM) and Application-centric (A-CSM). The cyber intelligence identifies new attackers, victims, or defense capabilities. Moreover, a decentralized storage network (DSN) is integrated to reduce on-chain storage costs without undermining its robustness. Experiments with the prototype implementation and real-world cyber datasets show that the blockchain-based CSM solution is effective and efficient. The P2P CDN application explores and utilizes the functionality of reliable computation that blockchain empowers. Particularly, P2P CDN is promising to provide benefits including cost-saving and scalable peak-demand handling compared with centralized CDNs. However, reliable P2P delivery requires proper enforcement of delivery fairness. Unfortunately, most existing studies on delivery fairness are based on non-cooperative game-theoretic assumptions that are arguably unrealistic in the ad-hoc P2P setting. To address this issue, an expressive security requirement for desired fair P2P content delivery is defined and two efficient approaches based on blockchain for P2P downloading and P2P streaming are proposed. The proposed system guarantees the fairness for each party even when all others collude to arbitrarily misbehave and achieves asymptotically optimal on-chain costs and optimal delivery communication

    From MANET to people-centric networking: Milestones and open research challenges

    Get PDF
    In this paper, we discuss the state of the art of (mobile) multi-hop ad hoc networking with the aim to present the current status of the research activities and identify the consolidated research areas, with limited research opportunities, and the hot and emerging research areas for which further research is required. We start by briefly discussing the MANET paradigm, and why the research on MANET protocols is now a cold research topic. Then we analyze the active research areas. Specifically, after discussing the wireless-network technologies, we analyze four successful ad hoc networking paradigms, mesh networks, opportunistic networks, vehicular networks, and sensor networks that emerged from the MANET world. We also present an emerging research direction in the multi-hop ad hoc networking field: people centric networking, triggered by the increasing penetration of the smartphones in everyday life, which is generating a people-centric revolution in computing and communications

    Secure Communication in Disaster Scenarios

    Get PDF
    Während Naturkatastrophen oder terroristischer Anschläge ist die bestehende Kommunikationsinfrastruktur häufig überlastet oder fällt komplett aus. In diesen Situationen können mobile Geräte mithilfe von drahtloser ad-hoc- und unterbrechungstoleranter Vernetzung miteinander verbunden werden, um ein Notfall-Kommunikationssystem für Zivilisten und Rettungsdienste einzurichten. Falls verfügbar, kann eine Verbindung zu Cloud-Diensten im Internet eine wertvolle Hilfe im Krisen- und Katastrophenmanagement sein. Solche Kommunikationssysteme bergen jedoch ernsthafte Sicherheitsrisiken, da Angreifer versuchen könnten, vertrauliche Daten zu stehlen, gefälschte Benachrichtigungen von Notfalldiensten einzuspeisen oder Denial-of-Service (DoS) Angriffe durchzuführen. Diese Dissertation schlägt neue Ansätze zur Kommunikation in Notfallnetzen von mobilen Geräten vor, die von der Kommunikation zwischen Mobilfunkgeräten bis zu Cloud-Diensten auf Servern im Internet reichen. Durch die Nutzung dieser Ansätze werden die Sicherheit der Geräte-zu-Geräte-Kommunikation, die Sicherheit von Notfall-Apps auf mobilen Geräten und die Sicherheit von Server-Systemen für Cloud-Dienste verbessert
    • …
    corecore