131,010 research outputs found

    Intrusion detection attack patterns in cloud computing: trust and risk assessment

    Get PDF
    Dependence on cloud services has been steadily increasing in recent years, as cloud services are an attractive option to offer flexibility and cost effectiveness through economies of scale. Cloud services are also exposed to security incidents, such as data breaches and other malicious activities. To mitigate risks to the confidentiality, integrity, and availability of assets, but also minimise loss to cloud service providers and users, the attack trust and risk elements need to be identified, classified, and prioritised. The aim of the proposed conceptual framework is to combine trust and risk assessment sources with data of risk assessment related to each attack pattern. This novel approach is a new qualitative solution to examine and determine symptoms, indicators, and vulnerabilities to detect the impact and likelihood of distributed attacks directed at cloud computing environments. The proposed framework might help to reduce false positive alarms and improve performance in Intrusion Detection Systems

    Cloud-computing strategies for sustainable ICT utilization : a decision-making framework for non-expert Smart Building managers

    Get PDF
    Virtualization of processing power, storage, and networking applications via cloud-computing allows Smart Buildings to operate heavy demand computing resources off-premises. While this approach reduces in-house costs and energy use, recent case-studies have highlighted complexities in decision-making processes associated with implementing the concept of cloud-computing. This complexity is due to the rapid evolution of these technologies without standardization of approach by those organizations offering cloud-computing provision as a commercial concern. This study defines the term Smart Building as an ICT environment where a degree of system integration is accomplished. Non-expert managers are highlighted as key users of the outcomes from this project given the diverse nature of Smart Buildings’ operational objectives. This research evaluates different ICT management methods to effectively support decisions made by non-expert clients to deploy different models of cloud-computing services in their Smart Buildings ICT environments. The objective of this study is to reduce the need for costly 3rd party ICT consultancy providers, so non-experts can focus more on their Smart Buildings’ core competencies rather than the complex, expensive, and energy consuming processes of ICT management. The gap identified by this research represents vulnerability for non-expert managers to make effective decisions regarding cloud-computing cost estimation, deployment assessment, associated power consumption, and management flexibility in their Smart Buildings ICT environments. The project analyses cloud-computing decision-making concepts with reference to different Smart Building ICT attributes. In particular, it focuses on a structured programme of data collection which is achieved through semi-structured interviews, cost simulations and risk-analysis surveys. The main output is a theoretical management framework for non-expert decision-makers across variously-operated Smart Buildings. Furthermore, a decision-support tool is designed to enable non-expert managers to identify the extent of virtualization potential by evaluating different implementation options. This is presented to correlate with contract limitations, security challenges, system integration levels, sustainability, and long-term costs. These requirements are explored in contrast to cloud demand changes observed across specified periods. Dependencies were identified to greatly vary depending on numerous organizational aspects such as performance, size, and workload. The study argues that constructing long-term, sustainable, and cost-efficient strategies for any cloud deployment, depends on the thorough identification of required services off and on-premises. It points out that most of today’s heavy-burdened Smart Buildings are outsourcing these services to costly independent suppliers, which causes unnecessary management complexities, additional cost, and system incompatibility. The main conclusions argue that cloud-computing cost can differ depending on the Smart Building attributes and ICT requirements, and although in most cases cloud services are more convenient and cost effective at the early stages of the deployment and migration process, it can become costly in the future if not planned carefully using cost estimation service patterns. The results of the study can be exploited to enhance core competencies within Smart Buildings in order to maximize growth and attract new business opportunities

    Analisis Uji Komparasi Customer Satisfaction Survey Dalam Penggunaan Google Cloud Platform (GCP) Menggunakan Metode Pieces Dan System Usability Scale

    Get PDF
    Cloud Computing technology makes a technology that is most often applied later in the future. Currently, cloud computing technology provides many types of services, including cost management services, data analysis, big data, storage, machine learning, big data, AI, IoT, and application development. Cloud computing technology has made a service and solution, both to increase reliability, reduce computing costs, to provide a great opportunity for the ICT industry to benefit more from cloud computing technology. Customer satisfaction is a level of feeling from someone after being able to compare the performance or results that are felt and obtained compared to their expectations or can be interpreted as a response to customer feedback in using cloud computing technology and an assessment of the good and bad of cloud computing technology which can be used as a reference or a benchmark for cloud computing developers to improve the performance of cloud computing technology that has been built. The level of customer satisfaction can be found using many model methods. In this study the level of satisfaction will be analyzed using the PIECES method and the System Usability Scale. In this study, researchers used two model methods and then carried out a comparative test of these methods. The PIECES variables are Performance, Information and data, Economics, Control and security, Efficiency and Service. The results of the study obtained an average value for each domain, namely the Performance domain with a value of 4.40 (Very Satisfied), Information and data with a value of 4.30 (Very Satisfied), Economics with a value of 4.33 (Very Satisfied), Control and security with a value of 4.28 (Very Satisfied), Efficiency with a value of 4.96 (Very Satisfied) and Service with a value of 4.00 (Satisfied). The recapitulation results for the average value for the entire domain level with a value of 4.37 (Very Satisfied). In the System Usability Scale method, a score of 82.08 is entered in the Acceptable category and grade A. With the comparative test results of the two methods, the satisfaction level of Google Cloud Platform customers is stated to be very satisfied and very good by the customers

    Innovative public governance through cloud computing: Information privacy, business models and performance measurement challenges

    Get PDF
    Purpose: The purpose of this paper is to identify and analyze challenges and to discuss proposed solutions for innovative public governance through cloud computing. Innovative technologies, such as federation of services and cloud computing, can greatly contribute to the provision of e-government services, through scaleable and flexible systems. Furthermore, they can facilitate in reducing costs and overcoming public information segmentation. Nonetheless, when public agencies use these technologies, they encounter several associated organizational and technical changes, as well as significant challenges. Design/methodology/approach: We followed a multidisciplinary perspective (social, behavioral, business and technical) and conducted a conceptual analysis for analyzing the associated challenges. We conducted focus group interviews in two countries for evaluating the performance models that resulted from the conceptual analysis. Findings: This study identifies and analyzes several challenges that may emerge while adopting innovative technologies for public governance and e-government services. Furthermore, it presents suggested solutions deriving from the experience of designing a related platform for public governance, including issues of privacy requirements, proposed business models and key performance indicators for public services on cloud computing. Research limitations/implications: The challenges and solutions discussed are based on the experience gained by designing one platform. However, we rely on issues and challenges collected from four countries. Practical implications: The identification of challenges for innovative design of e-government services through a central portal in Europe and using service federation is expected to inform practitioners in different roles about significant changes across multiple levels that are implied and may accelerate the challenges' resolution. Originality/value: This is the first study that discusses from multiple perspectives and through empirical investigation the challenges to realize public governance through innovative technologies. The results emerge from an actual portal that will function at a European level. © Emerald Group Publishing Limited

    Decision Support Tools for Cloud Migration in the Enterprise

    Full text link
    This paper describes two tools that aim to support decision making during the migration of IT systems to the cloud. The first is a modeling tool that produces cost estimates of using public IaaS clouds. The tool enables IT architects to model their applications, data and infrastructure requirements in addition to their computational resource usage patterns. The tool can be used to compare the cost of different cloud providers, deployment options and usage scenarios. The second tool is a spreadsheet that outlines the benefits and risks of using IaaS clouds from an enterprise perspective; this tool provides a starting point for risk assessment. Two case studies were used to evaluate the tools. The tools were useful as they informed decision makers about the costs, benefits and risks of using the cloud.Comment: To appear in IEEE CLOUD 201

    On Evaluating Commercial Cloud Services: A Systematic Review

    Full text link
    Background: Cloud Computing is increasingly booming in industry with many competing providers and services. Accordingly, evaluation of commercial Cloud services is necessary. However, the existing evaluation studies are relatively chaotic. There exists tremendous confusion and gap between practices and theory about Cloud services evaluation. Aim: To facilitate relieving the aforementioned chaos, this work aims to synthesize the existing evaluation implementations to outline the state-of-the-practice and also identify research opportunities in Cloud services evaluation. Method: Based on a conceptual evaluation model comprising six steps, the Systematic Literature Review (SLR) method was employed to collect relevant evidence to investigate the Cloud services evaluation step by step. Results: This SLR identified 82 relevant evaluation studies. The overall data collected from these studies essentially represent the current practical landscape of implementing Cloud services evaluation, and in turn can be reused to facilitate future evaluation work. Conclusions: Evaluation of commercial Cloud services has become a world-wide research topic. Some of the findings of this SLR identify several research gaps in the area of Cloud services evaluation (e.g., the Elasticity and Security evaluation of commercial Cloud services could be a long-term challenge), while some other findings suggest the trend of applying commercial Cloud services (e.g., compared with PaaS, IaaS seems more suitable for customers and is particularly important in industry). This SLR study itself also confirms some previous experiences and reveals new Evidence-Based Software Engineering (EBSE) lessons

    The Strategy of the Commons: Modelling the Annual Cost of Successful ICT Services for European Research

    Get PDF
    The provision of ICT services for research is increasingly using Cloud services to complement the traditional federation of computing centres. Due to the complex funding structure and differences in the basic business model, comparing the cost-effectiveness of these options requires a new approach to cost assessment. This paper presents a cost assessment method addressing the limitations of the standard methods and some of the initial results of the study. This acts as an illustration of the kind of cost assessment issues high-utilisation rate ICT services should consider when choosing between different infrastructure options. The research is co-funded by the European Commission Seventh Framework Programme through the e-FISCAL project (contract number RI-283449)

    Secure Cloud-Edge Deployments, with Trust

    Get PDF
    Assessing the security level of IoT applications to be deployed to heterogeneous Cloud-Edge infrastructures operated by different providers is a non-trivial task. In this article, we present a methodology that permits to express security requirements for IoT applications, as well as infrastructure security capabilities, in a simple and declarative manner, and to automatically obtain an explainable assessment of the security level of the possible application deployments. The methodology also considers the impact of trust relations among different stakeholders using or managing Cloud-Edge infrastructures. A lifelike example is used to showcase the prototyped implementation of the methodology
    corecore