1,872 research outputs found

    Reliable high-data rate body-centric wireless communication

    Get PDF

    Improved reception of in-body signals by means of a wearable multi-antenna system

    Get PDF
    High data-rate wireless communication for in-body human implants is mainly performed in the 402-405 MHz Medical Implant Communication System band and the 2.45 GHz Industrial, Scientific and Medical band. The latter band offers larger bandwidth, enabling high-resolution live video transmission. Although in-body signal attenuation is larger, at least 29 dB more power may be transmitted in this band and the antenna efficiency for compact antennas at 2.45 GHz is also up to 10 times higher. Moreover, at the receive side, one can exploit the large surface provided by a garment by deploying multiple compact highly efficient wearable antennas, capturing the signals transmitted by the implant directly at the body surface, yielding stronger signals and reducing interference. In this paper, we implement a reliable 3.5 Mbps wearable textile multi-antenna system suitable for integration into a jacket worn by a patient, and evaluate its potential to improve the In-to-Out Body wireless link reliability by means of spatial receive diversity in a standardized measurement setup. We derive the optimal distribution and the minimum number of on-body antennas required to ensure signal levels that are large enough for real-time wireless endoscopy-capsule applications, at varying positions and orientations of the implant in the human body

    Enhancing the Performance of Medical Implant Communication Systems through Cooperative Diversity

    Get PDF
    Battery-operated medical implants—such as pacemakers or cardioverter-defibrillators—have already been widely used in practical telemedicine and telecare applications. However, no solution has yet been found to mitigate the effect of the fading that the in-body to off-body communication channel is subject to. In this paper, we reveal and assess the potential of cooperative diversity to combat fading—hence to improve system performance—in medical implant communication systems. In the particular cooperative communication scenario we consider, multiple cooperating receiver units are installed across the room accommodating the patient with a medical implant inside his/her body. Our investigations have shown that the application of cooperative diversity is a promising approach to enhance the performance of medical implant communication systems in various aspects such as implant lifetime and communication link reliability

    UWB radio channel and diversity characterization for wireless implanted devices

    Full text link
    Las redes de área corporal permiten la interconexión de nodos independientes situados dentro o fuera de la superficie corporal o, incluso, alejados de dicha superficie. En cuanto a las comunicaciones intracorporales, el establecimiento de un enlace robusto con una cápsula endoscópica o con un marcapasos, son ejemplos de los avances tecnológicos conseguidos en las últimas décadas. A pesar de estos desarrollos en asistencia sanitaria, los estándares actuales para este tipo de comunicaciones no permiten conexiones inalámbricas de alta velocidad de transmisión, las cuales son comunes en los servicios actuales de telecomunicaciones. Los sistemas UWB han surgido como potencial candidato para las futuras redes de comunicaciones inalámbricas intracorporales. No obstante, el principal obstáculo de la tecnología UWB para aplicaciones intracorporales es la alta atenuación que sufren las señales transmitidas al atravesar los distintos tejidos corporales, que aumenta drásticamente con el aumento de la frecuencia. Por tanto, es importante una caracterización precisa del canal UWB intracorporal a la hora de validar dicha banda como la adecuada para este propósito.Esta tesis se centra en el análisis de la tecnología UWB para posibilitar comunicaciones intracorporales inalámbricas desde un punto de vista experimental. Para conseguir este objetivo, se ha empleado un novedoso sistema de medidas experimental basado en fantomas en diversos escenarios de propagación intracorporal. De esta forma, se pueden comprobar las pérdidas de propagación en el medio así como la diversidad del canal de una forma fiable. Con el fin de validar los valores obtenidos en el laboratorio, se han comparado y analizado con los obtenidos en un experimento in vivo. Por otro lado, se han diseñado y fabricado nuevas antenas UWB candidatas para comunicaciones intracorporales, empleando técnicas existentes y nuevas de miniaturización y optimización. Finalmente, se han usado técnicas basadas en diversidad para mejorar el rendimiento del canal de propagación en dos escenarios intracorporales diferentes.Wireless Body Area Networks allow the interconnection between independent nodes located either inside or over the body skin or further. Regarding in-body communications, establishing a proper link with a capsule endoscope or with a pacemaker are examples of technological advances achieved in the last decades. In spite of these healthcare developments, current standards for these kind of communications do not allow high data rate wireless connections, which are common in the current telecommunication services. UWB systems have emerged as a potential solution for future wireless in-body communications. Nevertheless, the main drawback of UWB for in-body applications is the high attenuation of human body tissues which increases dramatically with the increment of frequency. Hence, an accurate UWB in-body channel characterization is relevant in order validate UWB frequency band as the best candidate for future networks of implantable nodes. This thesis is devoted to test UWB technology for in-body communications from an experimental point of view. To achieve this goal, a novel spatial phantom-based measurement setup is used in several in-body propagation scenarios. Thus, the losses in the propagation medium and the channel diversity are checked in a reliable way. In order to check the values obtained in laboratory, they are compared and discussed with those obtained in an in vivo experiment. On the other hand, new UWB antenna candidates for inbody communications are designed and manufactured by using typical and new miniaturization and antenna optimization techniques for this purpose. Finally, diversity-based techniques are used to improve the performance of the propagation channel in two different in-body scenarios.Les xarxes d'àrea corporal permeten la interconnexió de nodes independents situats, o bé dins, o bé sobre la pell, o inclús allunyats del propi cos. Pel que fa a les comunicacions intracorporals, l'establiment d'un bon enllaç amb una càpsula endoscòpica o amb un marcapassos, són exemples dels avanços tecnològics aconseguits les darreres dècades. A pesar d'aquests desenvolupaments en assistència sanitària, els estàndards actuals per a aquests tipus de comunicacions no permeten connexions sense fil d'alta velocitat de transmissió, que són habituals als serveis actuals de telecomunicacions. Els sistemes UWB han sorgit com una solució potencial per a les futures comunicacions sense fill intracorporals. No obstant, el principal obstacle de la tecnologia UWB per a les aplicacions intracorporals és l'alta atenuació dels teixits del cos humà, que augmenta dràsticament amb l'increment de freqüència. Per tant, és important una caracterització acurada del canal UWB intracorporal a l'hora de validar la banda de freqüència UWB com a la millor candidata per a les futures xarxes de nodes implantats.Aquesta tesi se centra en l'anàlisi de la tecnologia UWB per a comunicacions intracorporals des d'un punt de vista experimental. Per a aconseguir aquest objectiu s'ha emprat un sistema novedós de mesures experimentals, basat en fantomes, en diversos escenaris de propagació intracorporal. D'aquesta manera es poden comprovar les pèrdues de propagació en el medi i la diversitat del canal d'una forma fiable. Per tal d'avaluar els valors obtinguts al laboratori, s'han comparat i analitzat amb aquells obtinguts en un experiment in vivo. Per altra banda, s'han dissenyat i fabricat noves antenes UWB candidates per a comunicacions intracorporals emprant tècniques típiques i noves de miniaturització i optimització d'antenes per a aquest propòsit. Finalment s'han usat tècniques basades en diversitat per a millorar el rendiment del canal de propagació en dos escenaris intracorporals diferents.Andreu Estellés, C. (2018). UWB radio channel and diversity characterization for wireless implanted devices [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/111836TESI

    High-performance wireless interface for implant-to-air communications

    Get PDF
    Nous élaborons une interface cerveau-machine (ICM) entièrement sans fil afin de fournir un système de liaison directe entre le cerveau et les périphériques externes, permettant l’enregistrement et la stimulation du cerveau pour une utilisation permanente. Au cours de cette thèse, nous explorons la modélisation de canal, les antennes implantées et portables en tant que propagateurs appropriés pour cette application, la conception du nouveau système d’un émetteur-récepteur UWB implantable, la conception niveau système du circuit et sa mise en oeuvre par un procédé CMOS TSMC 0.18 um. En plus, en collaboration avec Université McGill, nous avons conçu un réseau de seize antennes pour une détection du cancer du sein à l’aide d’hyperfréquences. Notre première contribution calcule la caractérisation de canal de liaison sans fil UWB d’implant à l’air, l’absorption spécifique moyennée (ASAR), et les lignes directrices de la FCC sur la densité spectrale de puissance UWB transmis. La connaissance du comportement du canal est nécessaire pour déterminer la puissance maximale permise à 1) respecter les lignes directrices ANSI pour éviter des dommages aux tissus et 2) respecter les lignes directrices de la FCC sur les transmissions non autorisées. Nous avons recours à un modèle réaliste du canal biologique afin de concevoir les antennes pour l’émetteur implanté et le récepteur externe. Le placement des antennes est examiné avec deux scénarios contrastés ayant des contraintés de puissance. La performance du système au sein des tissus biologiques est examinée par l’intermédiaire des simulations et des expériences. Notre deuxième contribution est dédiée à la conception des antennes simples et à double polarisation pour les systèmes d’enregistrement neural sans fil à bande ultra-large en utilisant un modèle multicouches inhomogène de la tête humaine. Les antennes fabriquées à partir de matériaux flexibles sont plus facilement adaptées à l’implantation ; nous étudions des matériaux à la fois flexibles et rigides et examinons des compromis de performance. Les antennes proposées sont conçues pour fonctionner dans une plage de fréquence de 2-11 GHz (ayant S11-dessous de -10 dB) couvrant à la fois la bande 2.45 GHz (ISM) et la bande UWB 3.1-10.6 GHz. Des mesures confirment les résultats de simulation et montrent que les antennes flexibles ont peu de dégradation des performances en raison des effets de flexion (en termes de correspondance d’impédance). Finalement, une comparaison est réalisée entre quatre antennes implantables, couvrant la gamme 2-11 GHz : 1) une rigide, à la polarisation simple, 2) une rigide, à double polarisation, 3) une flexible, à simple polarisation et 4) une flexible, à double polarisation. Dans tous les cas une antenne rigide est utilisée à l’extérieur du corps, avec une polarisation appropriée. Plusieurs avantages ont été confirmés pour les antennes à la polarisation double : 1) une taille plus petite, 2) la sensibilité plus faible aux désalignements angulaires, et 3) une plus grande fidélité. Notre troisième contribution fournit la conception niveau système de l’architecture de communication sans fil pour les systèmes implantés qui stimulent simultanément les neurones et enregistrent les réponses de neurones. Cette architecture prend en charge un grand nombre d’électrodes (> 500), fournissant 100 Mb/s pour des signaux de stimulation de liaison descendante, et Gb/s pour les enregistrements de neurones de liaison montante. Nous proposons une architecture d’émetteur-récepteur qui partage une antenne ultra large bande, un émetteur-récepteur simplifié, travaillant en duplex intégral sur les deux bandes, et un nouveau formeur d’impulsions pour la liaison montante du Gb/s soutenant plusieurs formats de modulation. Nous présentons une démonstration expérimentale d’ex vivo de l’architecture en utilisant des composants discrets pour la réalisation les taux Gb/s en liaison montante. Une bonne performance de taux d’erreur de bit sur un canal biologique à 0,5, 1 et 2 Gb/s des débits de données pour la télémétrie de liaison montante (UWB) et 100 Mb/s pour la télémétrie en liaison descendante (bande 2.45 GHz) est atteinte. Notre quatrième contribution présente la conception au niveau du circuit d’un dispositif d’émission en duplex total qui est présentée dans notre troisième contribution. Ce dispositif d’émission en duplex total soutient les applications d’interfaçage neural multimodal et en haute densité (les canaux de stimulant et d’enregistrement) avec des débits de données asymétriques. L’émetteur (TX) et le récepteur (RX) partagent une seule antenne pour réduire la taille de l’implant. Le TX utilise impulse radio ultra-wide band (IR-UWB) basé sur une approche alliant des bords, et le RX utilise un nouveau 2.4 GHz récepteur on-off keying (OOK).Une bonne isolation (> 20 dB) entre le trajet TX et RX est mis en oeuvre 1) par mise en forme des impulsions transmises pour tomber dans le spectre UWB non réglementé (3.1-7 GHz), et 2) par un filtrage espace-efficace du spectre de liaison descendante OOK dans un amplificateur à faible bruit RX. L’émetteur UWB 3.1-7 GHz peut utiliser soit OOK soit la modulation numérique binaire à déplacement de phase (BPSK). Le FDT proposé offre une double bande avec un taux de données de liaison montante de 500 Mbps TX et un taux de données de liaison descendante de 100 Mb/s RX, et il est entièrement en conformité avec les standards TSMC 0.18 um CMOS dans un volume total de 0,8 mm2. Ainsi, la mesure de consommation d’énergie totale en mode full duplex est de 10,4 mW (5 mW à 100 Mb/s pour RX, et de 5,4 mW à 500 Mb/s ou 10,8 PJ / bits pour TX). Notre cinquième contribution est une collaboration avec l’Université McGill dans laquelle nous concevons des antennes simples et à double polarisation pour les systèmes de détection du cancer du sein à l’aide d’hyperfréquences sans fil en utilisant un modèle multi-couche et inhomogène du sein humain. Les antennes fabriquées à partir de matériaux flexibles sont plus facilement adaptées à des applications portables. Les antennes flexibles miniaturisées monopôles et spirales sur un 50 um Kapton polyimide sont conçus, en utilisant high frequency structure simulator (HFSS), à être en contact avec des tissus biologiques du sein. Les antennes proposées sont conçues pour fonctionner dans une gamme de fréquences de 2 à 4 GHz. Les mesures montrent que les antennes flexibles ont une bonne adaptation d’impédance dans les différentes positions sur le sein. De Plus, deux antennes à bande ultralarge flexibles 4 × 4 (simple et à double polarisation), dans un format similaire à celui d’un soutien-gorge, ont été développés pour un système de détection du cancer du sein basé sur le radar.We are working on a fully wireless brain-machine-interface to provide a communication link between the brain and external devices, enabling recording and stimulating the brain for permanent usage. In this thesis we explore channel modeling, implanted and wearable antennas as suitable propagators for this application, system level design of an implantable UWB transceiver, and circuit level design and implementing it by TSMC 0.18 um CMOS process. Also, in a collaboration project with McGill University, we designed a flexible sixteen antenna array for microwave breast cancer detection. Our first contribution calculates channel characteristics of implant-to-air UWB wireless link, average specific absorption rate (ASAR), and FCC guidelines on transmitted UWB power spectral density. Knowledge of channel behavior is required to determine the maximum allowable power to 1) respect ANSI guidelines for avoiding tissue damage and 2) respect FCC guidelines on unlicensed transmissions. We utilize a realistic model of the biological channel to inform the design of antennas for the implanted transmitter and the external receiver. Antennas placement is examined under two scenarios having contrasting power constraints. Performance of the system within the biological tissues is examined via simulations and experiments. Our second contribution deals with designing single and dual-polarization antennas for wireless ultra-wideband neural recording systems using an inhomogeneous multi-layer model of the human head. Antennas made from flexible materials are more easily adapted to implantation; we investigate both flexible and rigid materials and examine performance trade-offs. The proposed antennas are designed to operate in a frequency range of 2–11 GHz (having S11 below -10 dB) covering both the 2.45 GHz (ISM) band and the 3.1–10.6 GHz UWB band. Measurements confirm simulation results showing flexible antennas have little performance degradation due to bending effects (in terms of impedance matching). Finally, a comparison is made of four implantable antennas covering the 2-11 GHz range: 1) rigid, single polarization, 2) rigid, dual polarization, 3) flexible, single polarization and 4) flexible, dual polarization. In all cases a rigid antenna is used outside the body, with an appropriate polarization. Several advantages were confirmed for dual polarization antennas: 1) smaller size, 2) lower sensitivity to angular misalignments, and 3) higher fidelity. Our third contribution provides system level design of wireless communication architecture for implanted systems that simultaneously stimulate neurons and record neural responses. This architecture supports large numbers of electrodes (> 500), providing 100 Mb/s for the downlink of stimulation signals, and Gb/s for the uplink neural recordings. We propose a transceiver architecture that shares one ultra-wideband antenna, a streamlined transceiver working at full-duplex on both bands, and a novel pulse shaper for the Gb/s uplink supporting several modulation formats. We present an ex-vivo experimental demonstration of the architecture using discrete components achieving Gb/s uplink rates. Good bit error rate performance over a biological channel at 0.5, 1, and 2 Gbps data rates for uplink telemetry (UWB) and 100 Mbps for downlink telemetry (2.45 GHz band) is achieved. Our fourth contribution presents circuit level design of the novel full-duplex transceiver (FDT) which is presented in our third contribution. This full-duplex transceiver supports high-density and multimodal neural interfacing applications (high-channel count stimulating and recording) with asymmetric data rates. The transmitter (TX) and receiver (RX) share a single antenna to reduce implant size. The TX uses impulse radio ultra-wide band (IR-UWB) based on an edge combining approach, and the RX uses a novel 2.4-GHz on-off keying (OOK) receiver. Proper isolation (> 20 dB) between the TX and RX path is implemented 1) by shaping the transmitted pulses to fall within the unregulated UWB spectrum (3.1-7 GHz), and 2) by spaceefficient filtering (avoiding a circulator or diplexer) of the downlink OOK spectrum in the RX low-noise amplifier. The UWB 3.1-7 GHz transmitter can use either OOK or binary phase shift keying (BPSK) modulation schemes. The proposed FDT provides dual band 500-Mbps TX uplink data rate and 100 Mbps RX downlink data rate, and it is fully integrated into standard TSMC 0.18 um CMOS within a total size of 0.8 mm2. The total measured power consumption is 10.4 mW in full duplex mode (5 mW at 100 Mbps for RX, and 5.4 mW at 500 Mbps or 10.8 pJ/bit for TX). Our fifth contribution is a collaboration project with McGill University which we design single and dual-polarization antennas for wireless ultra-wideband breast cancer detection systems using an inhomogeneous multi-layer model of the human breast. Antennas made from flexible materials are more easily adapted to wearable applications. Miniaturized flexible monopole and spiral antennas on a 50 um Kapton polyimide are designed, using a high frequency structure simulator (HFSS), to be in contact with biological breast tissues. The proposed antennas are designed to operate in a frequency range of 2–4 GHz (with reflection coefficient (S11) below -10 dB). Measurements show that the flexible antennas have good impedance matching while in different positions with different curvature around the breast. Furthermore, two flexible conformal 4×4 ultra-wideband antenna arrays (single and dual polarization), in a format similar to that of a bra, were developed for a radar-based breast cancer detection system

    Employing VLC technology for transmitting data in biological tissue

    Get PDF
    Abstract. With the development in wireless communication methods, visible light communication (VLC), a subset of Optical Wireless Communication (OWC) has garnered much attention to employ the technology for a secure short-range wireless communication. We present a feasibility study to determine the performance of VLC in short range wireless transmission of data through biological tissue. VLC is a cost efficient and secure means of transmitting high volume of data wirelessly which can considerably reduce the interference issues caused by electromagnetic pulses and external electric fields. We present a simple measurement approach based on Monte Carlo simulation of photon propagation in tissue to estimate the strength of wireless communication with body implant devices. Using light for communication brings inherent security against unauthorized access of digital data which could be acquired from the low energy body implant devices used for medical diagnosis and other studies. This thesis discusses the typical components required to establish VLC such as, transmitter, receiver and the channel mediums. Furthermore, two cases of Monte Carlo simulation of photon-tissue interaction are studied to determine a possibility if VLC is a suitable substitute to radio frequency (RF) for a more wireless communication with the body implants. The process of theoretical measurement begins with conversion of light intensity into an electrical signal and an estimation of achievable data rate through a complex heterogeneous biological tissue model. The theoretically achieved data rates of the communication were found to be in the order of megabits per second (Mbps), ensuring a possibility to utilize this technology for short range reliable wireless communication with a wider range and application of implant medical devices. Biophotonics.fi presents a computational simulation of light propagation in different types of computational tissue models comprehensively validated by comparison with the team’s practical implementation of the same setup. This simulation is also used in this thesis (5.2.2) to approximate more accurate data rates of communication in case of a practical implementation

    Modelling and characterisation of antennas and propagation for body-centric wireless communication

    Get PDF
    PhDBody-Centric Wireless Communication (BCWC) is a central point in the development of fourth generation mobile communications. The continuous miniaturisation of sensors, in addition to the advancement in wearable electronics, embedded software, digital signal processing and biomedical technologies, have led to a new concept of usercentric networks, where devices can be carried in the user’s pockets, attached to the user’s body or even implanted. Body-centric wireless networks take their place within the personal area networks, body area networks and body sensor networks which are all emerging technologies that have a broad range of applications such as healthcare and personal entertainment. The major difference between BCWC and conventional wireless systems is the radio channel over which the communication takes place. The human body is a hostile environment from radio propagation perspective and it is therefore important to understand and characterise the effect of the human body on the antenna elements, the radio channel parameters and hence the system performance. This is presented and highlighted in the thesis through a combination of experimental and electromagnetic numerical investigations, with a particular emphasis to the numerical analysis based on the finite-difference time-domain technique. The presented research work encapsulates the characteristics of the narrowband (2.4 GHz) and ultra wide-band (3-10 GHz) on-body radio channels with respect to different digital phantoms, body postures, and antenna types hence highlighting the effect of subject-specific modelling, static and dynamic environments and antenna performance on the overall body-centric network. The investigations covered extend further to include in-body communications where the radio channel for telemetry with medical implants is also analysed by considering the effect of different digital phantoms on the radio channel characteristics. The study supports the significance of developing powerful and reliable numerical modelling to be used in conjunction with measurement campaigns for a comprehensive understanding of the radio channel in body-centric wireless communication. It also emphasises the importance of considering subject-specific electromagnetic modelling to provide a reliable prediction of the network performance

    Ultra-Low Power Wake Up Receiver For Medical Implant Communications Service Transceiver

    Get PDF
    This thesis explores the specific requirements and challenges for the design of a dedicated wake-up receiver for medical implant communication services equipped with a novel “uncertain-IF†architecture combined with a high – Q filtering MEMS resonator and a free running CMOS ring oscillator as the RF LO. The receiver prototype, implements an IBM 0.18μm mixed-signal 7ML RF CMOS technology and achieves a sensitivity of -62 dBm at 404MHz while consuming \u3c100 μW from a 1 V supply

    Comprehensive performance analysis of fully cooperative communication in WBANs

    Get PDF
    © 2013 IEEE. While relay-based cooperative networks (widely known in the literature as cooperative communication), where relays only forward signals from the sources to the destination, have been extensively researched, fully cooperative systems have not been thoroughly examined. Unlike relay networks, in a fully cooperative network, each node acts as both a source node sending its own data and a relay forwarding its partner's data to the destination. Mutual cooperation between neighboring nodes is believed to improve the overall system error performance, especially when space-time codes are incorporated. However, a comprehensive performance analysis of space-time-coded fully cooperative communication from all three perspectives, namel,y error performance, outage probability, and energy efficiency, is still missing. Answers to the commonly asked questions of whether, in what conditions, and to what extent the space-time-coded fully cooperative communication is better than direct transmission are still unknown. Motivated by this fact and inspired by the increasing popularity of healthcare applications in wireless body area networks (WBANs), this paper derives for the first time a comprehensive performance analysis of a decode-and-forward space-time coded fully cooperative communication network in Rayleigh and Rician fading channels in either identically or non-identically distributed fading scenario. Numerical analysis of error performance, outage probability, and energy efficiency, validated by simulations, show that fully cooperative communication is better than direct transmission from all three aspects in many cases, especially at a low-power and low signal-to-noise ratio regime, which is a typical working condition in WBANs
    corecore