283 research outputs found

    Outage and Rate Evaluation of Drone based Decode and Forward Cooperation for Hybrid Fading Channels

    Get PDF
    In this paper, we consider a drone as a relay in Cooperative Communication (CC) to improve the network performance in an upcoming wireless network. Drone Assisted CC (DACC) is more useful when the central coordinator (base station) gets disrupted. In such a scenario, the drone works as an aerial relay and provides CC diversity to the end-users. In this article, a Decode-and-Forward (DF) protocol is used as a relaying scheme at the drone, and the Maximal Ratio Combining (MRC) scheme is used at the end-users for combining the direct and relayed signal. Here, we assume Nakagami faded channel among Airto- Ground (A2G) links and Rayleigh faded distribution between Ground-to-Ground (G2G) links. The performance of DA-CC is evaluated in a hybrid channel environment and compared based on drone height, rate, horizontal distance, and transmitted power with the existing Rayleigh and Nakagami faded distributions. The analytical expression of outage probability and the rate have been derived for analysis purposes, and Monte-Carlo simulations are used to verify the analytical results. This work can have security and surveillance applications to improve the network performance in the absence of a central base station

    Bringing Mobile Relays for Wireless Access Networks into Practice - Learning When to Relay

    Get PDF
    Adding fixed relay nodes (RNs) to wireless access networks requires additional costly infrastructure. Utilising mobile RNs, that is, user terminals that relay signals intended for other users being the destination nodes (DNs), is an appealing cost-effective solution. However, the changing node topology increases the required signalling for relay selection (RS). The signalling overhead consists of control signals that need to be exchanged between the RNs, the source node (SN) and the DN, to achieve the objectives of cooperation. To reduce signalling without penalising performance, the authors propose a three-step approach exploiting statistical knowledge on the likelihood of attaining performance gains by using RNs as a function of the node position (position of DNs and RNs). In the first step only the cell DNs that are likely to gain from relaying request the assistance of RNs. In the second step, for each DN that requests relaying, a limited set of RN candidates is formed. These decisions are made with the aid of thresholds applied to inter-node distances whose values are based on the acquired statistical knowledge. In the final step, RN candidates feed back the relevant channel state information to the SN that performs RS. Furthermore, the authors investigate the attained gains from mobile RNs as a function of the fading environment and they show that mobile RNs can help overcome the effects of severe fading

    DMT Optimal Cooperative Protocols with Destination-Based Selection of the Best Relay

    Get PDF
    We design a cooperative protocol in the context of wireless mesh networks in order to increase the reliability of wireless links. Destination terminals ask for cooperation when they fail in decoding data frames transmitted by source terminals. In that case, each destination terminal D calls a specific relay terminal B with a signaling frame to help its transmission with source terminal S. To select appropriate relays, destination terminals maintain tables of relay terminals, one for each possible source address. These tables are constituted by passively overhearing ongoing transmissions. Hence, when cooperation is needed between S and D, and when a relay B is found by terminal D in the relay table associated with terminal S, the destination terminal sends a negative acknowledgment frame that contains the address of B. When the best relay B has successfully decoded the source message, it sends a copy of the data frame to D using a selective decode-andforward transmission scheme. The on-demand approach allows maximization of the spatial multiplexing gain and the cooperation of the best relay allows maximization of the spatial diversity order. Hence, the proposed protocol achieves optimal diversitymultiplexing trade-off performance. Moreover, this performance is achieved through a collision-free selection process

    User Cooperation in TDMA Wireless System

    Get PDF
    Abstract: Reliability of radio link is limited, owing to path loss, shadowing and multi-path fading. This necessitates the use of a certain type of diversity. In recent years, cooperative diversity has gained considerable attention. Here, wireless nodes cooperate in such a way that they share their antennas and other resources, to create a virtual array through distributed transmission and signal processing. This increases coverage and reduces transmitted power, thereby bringing down co-channel interference, which results in increased system capacity. This paper gives an overview of the state of art of various cooperation schemes and issues related to their implementation

    Opportunistic Relaying in Time Division Broadcast Protocol with Incremental Relaying

    Get PDF
    In this paper, we investigate the performance of time division broadcast protocol (TDBC) with incremental relaying (IR) when there are multiple available relays. Opportunistic relaying (OR), i.e., the “best” relay is select for transmission to minimize the system’s outage probability, is proposed. Two OR schemes are presented. The first scheme, termed TDBC-OIR-I, selects the “best” relay from the set of relays that can decode both flows of signal from the two sources successfully. The second one, termed TDBC-OIR-II, selects two “best” relays from two respective sets of relays that can decode successfully each flow of signal. The performance, in terms of outage probability, expected rate (ER), and diversity-multiplexing tradeoff (DMT), of the two schemes are analyzed and compared with two TDBC schemes that have no IR but OR (termed TDBC-OR-I and TDBC-OR-II accordingly) and two other benchmark OR schemes that have no direct link transmission between the two sources

    Outage performance of underlay cognitive radio networks over mix fading environment

    Get PDF
    In this paper, the underlay cognitive radio network over mix fading environment is presented and investigated. A cooperative cognitive system with a secondary source node S, a secondary destination node D, secondary relay node Relay, and a primary node P are considered. In this model system, we consider the mix fading environment in two scenarios as Rayleigh/Nakagami-m and Nakagami-m/Rayleigh Fading channels. For system performance analysis, the closed-form expression of the system outage probability (OP) and the integral-formed expression of the ergodic capacity (EC) are derived in connection with the system's primary parameters. Finally, we proposed the Monte Carlo simulation for convincing the correctness of the system performance

    A Study Of Cooperative Spectrum Sharing Schemes For Internet Of Things Systems

    Get PDF
    The Internet of Things (IoT) has gained much attention in recent years with the massive increase in the number of connected devices. Cognitive Machine-to-Machine (CM2M) communications is a hot research topic in which a cognitive dimension allows M2M networks to overcome the challenges of spectrum scarcity, interference, and green requirements. In this paper, we propose a Generalized Cooperative Spectrum Sharing (GCSS) scheme for M2M communication. Cooperation extends the coverage of wireless networks as well as increasing their throughput while reducing the energy consumption of the connected low power devices. We study the outage performance of the proposed GCSS scheme for M2M system and derive exact expressions for the outage probability. We also analyze the effect of varying transmission powers on the performance of the system
    corecore