3,023 research outputs found

    Analysis of Different Types of Regret in Continuous Noisy Optimization

    Get PDF
    The performance measure of an algorithm is a crucial part of its analysis. The performance can be determined by the study on the convergence rate of the algorithm in question. It is necessary to study some (hopefully convergent) sequence that will measure how "good" is the approximated optimum compared to the real optimum. The concept of Regret is widely used in the bandit literature for assessing the performance of an algorithm. The same concept is also used in the framework of optimization algorithms, sometimes under other names or without a specific name. And the numerical evaluation of convergence rate of noisy algorithms often involves approximations of regrets. We discuss here two types of approximations of Simple Regret used in practice for the evaluation of algorithms for noisy optimization. We use specific algorithms of different nature and the noisy sphere function to show the following results. The approximation of Simple Regret, termed here Approximate Simple Regret, used in some optimization testbeds, fails to estimate the Simple Regret convergence rate. We also discuss a recent new approximation of Simple Regret, that we term Robust Simple Regret, and show its advantages and disadvantages.Comment: Genetic and Evolutionary Computation Conference 2016, Jul 2016, Denver, United States. 201

    Parallel Deterministic and Stochastic Global Minimization of Functions with Very Many Minima

    Get PDF
    The optimization of three problems with high dimensionality and many local minima are investigated under five different optimization algorithms: DIRECT, simulated annealing, Spall’s SPSA algorithm, the KNITRO package, and QNSTOP, a new algorithm developed at Indiana University

    Sampling high-dimensional design spaces for analysis and optimization

    Get PDF

    Generalized Simultaneous Perturbation-based Gradient Search with Reduced Estimator Bias

    Full text link
    We present in this paper a family of generalized simultaneous perturbation-based gradient search (GSPGS) estimators that use noisy function measurements. The number of function measurements required by each estimator is guided by the desired level of accuracy. We first present in detail unbalanced generalized simultaneous perturbation stochastic approximation (GSPSA) estimators and later present the balanced versions (B-GSPSA) of these. We extend this idea further and present the generalized smoothed functional (GSF) and generalized random directions stochastic approximation (GRDSA) estimators, respectively, as well as their balanced variants. We show that estimators within any specified class requiring more number of function measurements result in lower estimator bias. We present a detailed analysis of both the asymptotic and non-asymptotic convergence of the resulting stochastic approximation schemes. We further present a series of experimental results with the various GSPGS estimators on the Rastrigin and quadratic function objectives. Our experiments are seen to validate our theoretical findings.Comment: The material in this paper was presented in part at the Conference on Information Sciences and Systems (CISS) in March 202

    Guaranteed Non-Orthogonal Tensor Decomposition via Alternating Rank-11 Updates

    Full text link
    In this paper, we provide local and global convergence guarantees for recovering CP (Candecomp/Parafac) tensor decomposition. The main step of the proposed algorithm is a simple alternating rank-11 update which is the alternating version of the tensor power iteration adapted for asymmetric tensors. Local convergence guarantees are established for third order tensors of rank kk in dd dimensions, when k=o(d1.5)k=o \bigl( d^{1.5} \bigr) and the tensor components are incoherent. Thus, we can recover overcomplete tensor decomposition. We also strengthen the results to global convergence guarantees under stricter rank condition k≤βdk \le \beta d (for arbitrary constant β>1\beta > 1) through a simple initialization procedure where the algorithm is initialized by top singular vectors of random tensor slices. Furthermore, the approximate local convergence guarantees for pp-th order tensors are also provided under rank condition k=o(dp/2)k=o \bigl( d^{p/2} \bigr). The guarantees also include tight perturbation analysis given noisy tensor.Comment: We have added an additional sub-algorithm to remove the (approximate) residual error left after the tensor power iteratio
    • …
    corecore