1,084 research outputs found

    Regional climate projections in two alpine river basins: Upper Danube and Upper Brahmaputra

    Get PDF
    Projections from coarse-grid global circulation models are not suitable for regional estimates of water balance or trends of extreme precipitation and temperature, especially not in complex terrain. Thus, downscaling of global to regionally resolved projections is necessary to provide input to integrated water resources management approaches for river basins like the Upper Danube River Basin (UDRB) and the Upper Brahmaputra River Basin (UBRB). This paper discusses the application of the regional climate model COSMO-CLM as a dynamical downscaling tool. To provide accurate data the COSMO-CLM model output was post-processed by statistical means. This downscaling chain performs well in the baseline period 1971 to 2000. However, COSMO-CLM performs better in the UDRB than in the UBRB because of a longer application experience and a less complex climate in Europe. Different climate change scenarios were downscaled for the time period 1960–2100. The projections show an increase of temperature in both basins and for all seasons. The values are generally higher in the UBRB with the highest values occurring in the region of the Tibetan Plateau. Annual precipitation shows no substantial change. However, seasonal amounts show clear trends, for instance an increasing amount of spring precipitation in the UDRB. Again, the largest trends for different precipitation statistics are projected in the region of the Tibetan Plateau. Here, the projections show up to 50% longer dry periods in the months June to September with a simultaneous increase of about 10% for the maximum amount of precipitation on five consecutive days. For the Assam region in India, the projections also show an increase of 25% in the number of consecutive dry days during the monsoon season leading to prolonged monsoon breaks

    A new regional climate model for POLAR-CORDEX : evaluation of a 30-year hindcast with COSMO-CLM2 over Antarctica

    Get PDF
    Continent-wide climate information over the Antarctic Ice Sheet (AIS) is important to obtain accurate information of present climate and reduce uncertainties of the ice sheet mass balance response and resulting global sea level rise to future climate change. In this study, the COSMO-CLM2 Regional Climate Model is applied over the AIS and adapted for the specific meteorological and climatological conditions of the region. A 30-year hindcast was performed and evaluated against observational records consisting of long-term ground-based meteorological observations, automatic weather stations, radiosoundings, satellite records, stake measurements and ice cores. Reasonable agreement regarding the surface and upper-air climate is achieved by the COSMO-CLM2 model, comparable to the performance of other state-of-the-art climate models over the AIS. Meteorological variability of the surface climate is adequately simulated, and biases in the radiation and surface mass balance are small. The presented model therefore contributes as a new member to the COordinated Regional Downscaling EXperiment project over the AIS (POLAR-CORDEX) and the CORDEX-CORE initiative

    The CORDEX.be initiative as a foundation for climate services in Belgium

    Get PDF
    The CORDEX.be project created the foundations for Belgian climate services by producing high-resolution Belgian climate information that (a) incorporates the expertise of the different Belgian climate modeling groups and that (b) is consistent with the outcomes of the international CORDEX ("COordinated Regional Climate Downscaling Experiment") project. The key practical tasks for the project were the coordination of activities among different Belgian climate groups, fostering the links to specific international initiatives and the creation of a stakeholder dialogue. Scientifically, the CORDEX.be project contributed to the EURO-CORDEX project, created a small ensemble of High-Resolution (H-Res) future projections over Belgium at convection-permitting resolutions and coupled these to seven Local Impact Models. Several impact studies have been carried out. The project also addressed some aspects of climate change uncertainties. The interactions and feedback from the stakeholder dialogue led to different practical applications at the Belgian national level

    COSMO-CLM regional climate simulations in the Coordinated Regional Climate Downscaling Experiment (CORDEX) framework: a review

    Get PDF
    In the last decade, the Climate Limited-area Modeling Community (CLM-Community) has contributed to the Coordinated Regional Climate Downscaling Experiment (CORDEX) with an extensive set of regional climate simulations. Using several versions of the COSMO-CLM-Community model, ERA-Interim reanalysis and eight global climate models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) were dynamically downscaled with horizontal grid spacings of 0.44∘ (∼ 50 km), 0.22∘ (∼ 25 km), and 0.11∘ (∼ 12 km) over the CORDEX domains Europe, South Asia, East Asia, Australasia, and Africa. This major effort resulted in 80 regional climate simulations publicly available through the Earth System Grid Federation (ESGF) web portals for use in impact studies and climate scenario assessments. Here we review the production of these simulations and assess their results in terms of mean near-surface temperature and precipitation to aid the future design of the COSMO-CLM model simulations. It is found that a domain-specific parameter tuning is beneficial, while increasing horizontal model resolution (from 50 to 25 or 12 km grid spacing) alone does not always improve the performance of the simulation. Moreover, the COSMO-CLM performance depends on the driving data. This is generally more important than the dependence on horizontal resolution, model version, and configuration. Our results emphasize the importance of performing regional climate projections in a coordinated way, where guidance from both the global (GCM) and regional (RCM) climate modeling communities is needed to increase the reliability of the GCM–RCM modeling chain

    description and performance

    Get PDF
    We developed a coupled regional climate system model based on the CCLM regional climate model. Within this model system, using OASIS3-MCT as a coupler, CCLM can be coupled to two land surface models (the Community Land Model (CLM) and VEG3D), the NEMO-MED12 regional ocean model for the Mediterranean Sea, two ocean models for the North and Baltic seas (NEMO-NORDIC and TRIMNP+CICE) and the MPI-ESM Earth system model. We first present the different model components and the unified OASIS3-MCT interface which handles all couplings in a consistent way, minimising the model source code modifications and defining the physical and numerical aspects of the couplings. We also address specific coupling issues like the handling of different domains, multiple usage of the MCT library and exchange of 3-D fields. We analyse and compare the computational performance of the different couplings based on real-case simulations over Europe. The usage of the LUCIA tool implemented in OASIS3-MCT enables the quantification of the contributions of the coupled components to the overall coupling cost. These individual contributions are (1) cost of the model(s) coupled, (2) direct cost of coupling including horizontal interpolation and communication between the components, (3) load imbalance, (4) cost of different usage of processors by CCLM in coupled and stand-alone mode and (5) residual cost including i.a. CCLM additional computations. Finally a procedure for finding an optimum processor configuration for each of the couplings was developed considering the time to solution, computing cost and parallel efficiency of the simulation. The optimum configurations are presented for sequential, concurrent and mixed (sequential+concurrent) coupling layouts. The procedure applied can be regarded as independent of the specific coupling layout and coupling details. We found that the direct cost of coupling, i.e. communications and horizontal interpolation, in OASIS3-MCT remains below 7 % of the CCLM stand-alone cost for all couplings investigated. This is in particular true for the exchange of 450 2-D fields between CCLM and MPI-ESM. We identified remaining limitations in the coupling strategies and discuss possible future improvements of the computational efficiency

    Implementation and scaling of the fully coupled Terrestrial Systems Modeling Platform (TerrSysMP) in a massively parallel supercomputing environment – a case study on JUQUEEN (IBM Blue Gene/Q)

    Get PDF
    Continental-scale hyper-resolution simulations constitute a grand challenge in characterizing non-linear feedbacks of states and fluxes of the coupled water, energy, and biogeochemical cycles of terrestrial systems. Tackling this challenge requires advanced coupling and supercomputing technologies for earth system models that are discussed in this study, utilizing the example of the implementation of the newly developed Terrestrial Systems Modeling Platform (TerrSysMP) on JUQUEEN (IBM Blue Gene/Q) of the Jülich Supercomputing Centre, Germany. The applied coupling strategies rely on the Multiple Program Multiple Data (MPMD) paradigm and require memory and load balancing considerations in the exchange of the coupling fields between different component models and allocation of computational resources, respectively. These considerations can be reached with advanced profiling and tracing tools leading to the efficient use of massively parallel computing environments, which is then mainly determined by the parallel performance of individual component models. However, the problem of model I/O and initialization in the peta-scale range requires major attention, because this constitutes a true big data challenge in the perspective of future exa-scale capabilities, which is unsolved

    Sensitivity studies with the regional climate model COSMO-CLM 5.0 over the CORDEX Central Asia Domain

    Get PDF
    Due to its extension, geography and the presence of several underdeveloped or developing economies, the Central Asia domain of the Coordinated Regional Climate Downscaling Experiment (CORDEX) is one of the most vulnerable regions on Earth to the effects of climate changes. Reliable information on potential future changes with high spatial resolution acquire significant importance for the development of effective adaptation and mitigation strategies for the region. In this context, regional climate models (RCMs) play a fundamental role. In this paper, the results of a set of sensitivity experiments with the regional climate model COSMO-CLM version 5.0, for the Central Asia CORDEX domain, are presented. Starting from a reference model setup, general model performance is evaluated for the present day, testing the effects of singular changes in the model physical configuration and their mutual interaction with the simulation of monthly and seasonal values of three variables that are important for impact studies: near-surface temperature, precipitation and diurnal temperature range. The final goal of this study is two-fold: having a general overview of model performance and its uncertainties for the considered region and determining at the same time an optimal model configuration. Results show that the model presents remarkable deficiencies over different areas of the domain. The combined change of the albedo, taking into consideration the ratio of forest fractions, and the soil conductivity, taking into account the ratio of liquid water and ice in the soil, allows one to achieve the best improvements in model performance in terms of climatological means. Importantly, the model seems to be particularly sensitive to those parameterizations that deal with soil and surface features, and that could positively affect the repartition of incoming radiation. The analyses also show that improvements in model performance are not achievable for all domain subregions and variables, and they are the result of a compensation effect in the different cases. The proposed better performing configuration in terms of mean climate leads to similar positive improvements when considering different observational data sets and boundary data employed to force the simulations. On the other hand, due to the large uncertainties in the variability estimates from observations, the use of different boundaries and the model internal variability, it has not been possible to rank the different simulations according to their representation of the monthly variability. This work is the first ever sensitivity study of an RCM for the CORDEX Central Asia domain and its results are of fundamental importance for further model development and for future climate projections over the area

    CLM-Assembly 2018 Conference proceedings

    Get PDF
    From September 18 to 21, the 13th General Assembly of the CLM community (https://www.clm-community.eu/) took place at Campus South of the Karlsruhe Institute of Technology. Nearly 60 international participants learned over these four days about the latest results and developments of the COSMO-CLM and ICON model systems in 23 plenary lectures and 21 posters. The premises in building 10.81 (“altes Ingenieursgebäude”) also offered the opportunity to engage in parallel sessions in in-depth discussions in the individual working groups of the CLM community. The present conference proceedings hold all the abstracts of the oral and poster presentations during the assembly and gives a good insight in the broad work and applications of the CLM Community. Herewith, the organizing team would like to sincerely thank • the participants of the conference, • the CLM working group leaders, • the scientific advisory board, • the catering service, • the janitors of building 10.81, • the student assistants, and • all others involved in organizing the assembly

    Regionalisierung von GCMs in zwei alpinen Regionen: europäische Alpen und Himalaja

    Get PDF
    The main objective of this thesis is to examine the possibilities and limitations of high resolution climate projections in orographically influenced areas on the examples of the European Alps and the Himalayas. In particular, the question whether observed regional patterns can be better represented in the regional data than in the driving large-scale data is of interest. To this end, regional climate simulations by the COSMO-CLM and from two statistical downscaling methods are compared to ERA40 reanalysis data and data from the global atmosphere-ocean model ECHAM5/MPIOM using various parameters of the climate system. A comparison with the reanalysis on the basis of daily precipitation shows that the accuracy of the COSMO-CLM rainfall data on the 0.5° scale is comparable with ERA40 and statistically downscaled ERA40 precipitation. An additional bias correction of the COSMO-CLM precipitation shows good results. However, a sufficient number of rain days is necessary to give a certain degree of security in the bias estimate. In the present study a threshold of about 500 rain days is proposed. For the South Asian region the reproduction of a realistic Indian summer monsoon (ISM) is of high relevance. Considering only the mean values and temporal variabilities of different large-scale indices, the COSMO-CLM provides no added value compared to the driving data. However, the spatial patterns of rainfall and vertical wind shear as well as the temporal correlation of the ISM indices are improved by the application of the COSMO-CLM to the ECHAM5/MPIOM model. COSMO-CLM projections carried out for the years 1960 to 2100 show negative trends in the ISM indices for the SRES scenarios A2, A1B and B1. The most negative trends are found in A2, followed by A1B and B1. Almost no trends appear in the commitment scenario. Although there are large temporal variabilities, the trends in rainfall, outgoing longwave radiation and meridional and zonal wind shear are statistically significant in many regions of the simulation domain. For north-west India, the projections partially show a decline in rainfall during the monsoon season of more than 70% in 100 years. The decrease in wind shear is found to be based mainly on changes in the upper troposphere at 200 hPa. While in the COSMO-CLM projections all ISM indices show simultaneous negative trends, the trends for the all-India monsoon rainfall in the ECHAM5/MPIOM model are positive. Following the definition of the indices, simultaneous trends are more likely and the COSMO-CLM is able to add value on the global projections in this aspect as well. Overall, the results of this study show that the COSMO-CLM adds valuable regional information to the global models in the two regions investigated. For the river basins of the upper Danube and the upper Brahmaputra, the COSMO-CLM projections reveal a significant rise in temperature in both basins and for all seasons from 1960 to 2100. The values are generally higher in the Brahmaputra area with the highest values in the region of the Tibetan Plateau. For precipitation, there are also clear seasonal trends, such as an increase in spring precipitation in the upper Danube. The largest trends are again simulated in the region of the Tibetan Plateau with an increase of up to 50% in the drought length from June to September and a simultaneous increase of about 10% for the maximum amount of rainfall on five consecutive days. For the region Assam in India, the projections show further an increase of 25% in the number of consecutive dry days during the monsoon season.Das Ziel dieser Studie ist es, die Möglichkeiten und Grenzen von hochauflösenden Klimaprojektionen in orographisch beeinflussten Gebieten an den Beispielen der europäischen Alpen und des Himalajas zu prüfen. Insbesondere wird die Fragestellung untersucht, ob beobachtete regionale Muster in den höher aufgelösten Daten besser wiedergegeben werden als in den antreibenden großskaligen Daten. Dazu werden regionale Klimasimulationen des COSMO-CLM Modells und Daten von zwei statistischen Regionalisierungsmethoden mit ERA40 Reanalysen sowie Daten des globalen Atmosphäre-Ozean Modells ECHAM5/MPIOM für verschiedene Parameter des Klimasystems verglichen. Ein Vergleich mit den Reanalysen anhand täglicher Niederschlagsstatistiken ergibt, dass die COSMO-CLM Niederschlagsdaten auf der 0.5° Skala vergleichbar sind mit ERA40 Niederschlägen und mit statistisch regionalisierten ERA40 Niederschlägen. Eine zusätzliche Fehlerkorrektur der COSMO-CLM Niederschläge liefert gute Ergebnisse. Dabei sind jedoch etwa 500 Regentage notwendig, um eine robuste Fehlerabschätzung zu gewährleisten. Für das südasiatische Gebiet ist eine realistische Wiedergabe des indischen Sommermonsuns (ISM) in den Modellen von hoher Relevanz. Betrachtet man nur die Mittelwerte und zeitlichen Variabilitäten von verschiedenen Indizes des ISM, so liefert das COSMO-CLM keinen Mehrwert im Vergleich zu den antreibenden Daten. Allerdings werden die räumlichen Strukturen von Niederschlag und vertikaler Windscherung, sowie die zeitliche Korrelation der modellierten Indizes gegenüber dem ECHAM5/MPIOM Modell verbessert. Die durchgeführten COSMO-CLM Projektionen für die Jahre 1960 bis 2100 zeigen negative Trends des ISM für die SRES Szenarien A2, A1B und B1. Die negativsten Trends sind dabei im Szenario A2 zu finden, gefolgt von A1B und B1. Fast keine Trends zeigen sich im commitment Szenario. Trotz großen zeitlichen Variabilitäten sind die Abnahmen in Niederschlagsmengen, ausgehender langwelliger Strahlung und Windscherung statistisch signifikant in großen Regionen des Simulationsgebietes. Für Nordwest-Indien weisen die Projektionen teilweise einen Rückgang der Monsunniederschläge von über 70% in 100 Jahren auf. Der Rückgang der Windscherung ist hauptsächlich auf Veränderungen in der oberen Troposphäre bei 200 hPa zurück zu führen. Während in den COSMO-CLM Projektionen alle Indizes des ISM synchrone Negativtrends aufweisen, sind die Trends für den Monsunregen über Indien im globalen ECHAM5/MPIOM Model positiv. Gemäß den Definitionen der verschiedenen Indizes, sind jedoch synchrone Trends wahrscheinlicher und das COSMO-CLM liefert zu den globalen ISM Projektionen ebenfalls einen Mehrwert. Insgesamt zeigen die Ergebnisse dieser Studie, dass das COSMO-CLM wertvolle regionale Zusatzinformationen zu den globalen Modellen in den beiden untersuchten Regionen liefert. Für die Einzugsgebiete der oberen Donau und des oberen Brahmaputra liefern die COSMO-CLM Projektionen einen signifikanten Anstieg der Temperatur für alle Jahreszeiten der Jahre 1960 bis 2100. Die Werte sind generell höher im Brahmaputragebiet, mit den größten Trends in der Region des tibetanischen Plateaus. Im Niederschlag zeigen die saisonalen Anteile ebenfalls klare Trends, beispielsweise eine Zunahme des Frühjahrsniederschlags im Einzugsgebiet der oberen Donau. Die größten Trends werden wiederum in der Region des tibetanischen Plateaus projiziert mit einem Anstieg von bis zu 50% in der Länge der Trockenperioden zwischen Juni und September und einem gleichzeitigen Anstieg von etwa 10% für die maximale Niederschlagsmenge an fünf aufeinander folgenden Tagen. Für die Region Assam in Indien, zeigen die Projektionen zudem eine Zunahme von 25% in der Anzahl der aufeinander folgenden trockenen Tage während der Monsunzei

    The COSMO-CLM 4.8 regional climate model coupled to regional ocean, land surface and global earth system models using OASIS3-MCT: description and performance

    Get PDF
    We developed a coupled regional climate system model based on the CCLM regional climate model. Within this model system, using OASIS3-MCT as a coupler, CCLM can be coupled to two land surface models (the Community Land Model (CLM) and VEG3D), the NEMO-MED12 regional ocean model for the Mediterranean Sea, two ocean models for the North and Baltic seas (NEMO-NORDIC and TRIMNP+CICE) and the MPI-ESM Earth system model. We first present the different model components and the unified OASIS3-MCT interface which handles all couplings in a consistent way, minimising the model source code modifications and defining the physical and numerical aspects of the couplings. We also address specific coupling issues like the handling of different domains, multiple usage of the MCT library and exchange of 3-D fields. We analyse and compare the computational performance of the different couplings based on real-case simulations over Europe. The usage of the LUCIA tool implemented in OASIS3-MCT enables the quantification of the contributions of the coupled components to the overall coupling cost. These individual contributions are (1) cost of the model(s) coupled, (2) direct cost of coupling including horizontal interpolation and communication between the components, (3) load imbalance, (4) cost of different usage of processors by CCLM in coupled and stand-alone mode and (5) residual cost including i.a. CCLM additional computations. Finally a procedure for finding an optimum processor configuration for each of the couplings was developed considering the time to solution, computing cost and parallel efficiency of the simulation. The optimum configurations are presented for sequential, concurrent and mixed (sequential+concurrent) coupling layouts. The procedure applied can be regarded as independent of the specific coupling layout and coupling details. We found that the direct cost of coupling, i.e. communications and horizontal interpolation, in OASIS3-MCT remains below 7 % of the CCLM stand-alone cost for all couplings investigated. This is in particular true for the exchange of 450 2-D fields between CCLM and MPI-ESM. We identified remaining limitations in the coupling strategies and discuss possible future improvements of the computational efficiency
    corecore