122 research outputs found

    Assessing the quality of steady-state visual-evoked potentials for moving humans using a mobile electroencephalogram headset.

    Get PDF
    Recent advances in mobile electroencephalogram (EEG) systems, featuring non-prep dry electrodes and wireless telemetry, have enabled and promoted the applications of mobile brain-computer interfaces (BCIs) in our daily life. Since the brain may behave differently while people are actively situated in ecologically-valid environments versus highly-controlled laboratory environments, it remains unclear how well the current laboratory-oriented BCI demonstrations can be translated into operational BCIs for users with naturalistic movements. Understanding inherent links between natural human behaviors and brain activities is the key to ensuring the applicability and stability of mobile BCIs. This study aims to assess the quality of steady-state visual-evoked potentials (SSVEPs), which is one of promising channels for functioning BCI systems, recorded using a mobile EEG system under challenging recording conditions, e.g., walking. To systematically explore the effects of walking locomotion on the SSVEPs, this study instructed subjects to stand or walk on a treadmill running at speeds of 1, 2, and 3 mile (s) per hour (MPH) while concurrently perceiving visual flickers (11 and 12 Hz). Empirical results of this study showed that the SSVEP amplitude tended to deteriorate when subjects switched from standing to walking. Such SSVEP suppression could be attributed to the walking locomotion, leading to distinctly deteriorated SSVEP detectability from standing (84.87 ± 13.55%) to walking (1 MPH: 83.03 ± 13.24%, 2 MPH: 79.47 ± 13.53%, and 3 MPH: 75.26 ± 17.89%). These findings not only demonstrated the applicability and limitations of SSVEPs recorded from freely behaving humans in realistic environments, but also provide useful methods and techniques for boosting the translation of the BCI technology from laboratory demonstrations to practical applications

    A supervised machine-learning method for detecting steady-state visually evoked potentials for use in brain computer interfaces: A comparative assessment

    Get PDF
    It is hypothesised that supervised machine learning on the estimated parameters output by a model for visually evoked potentials (VEPs), created by KremlĂĄcek et al. (2002), could be used to classify steady-state visually evoked potentials (SSVEP) by frequency of stimulation. Classification of SSVEPs by stimulus frequency has application in SSVEP-based brain computer interfaces (BCI), where users are presented with flashing stimuli and user intent is decoded by identifying which stimulus the subject is attending to. We investigate the ability of the model of VEPs to fit the initial portions of SSVEPs, which are not yet in a steady state and contain characteristic features of VEPs superimposed with those of a steady state response. In this process the estimated parameters, as a function of the model for a given SSVEP response, were found. These estimated parameters were used to train several support vector machines (SVM) to classify the SSVEPs. Three initialisation conditions for the model are examined for their contribution to the goodness of fit and the subsequent classification accuracy, of the SVMs. It was found that the model was able to fit SSVEPs with a normalised root mean square error (NRMSE) of 27%, this performance did not match the expected NRMSE values of 13% reported by KremlĂĄcek et al. (2002) for fits on VEPs. The fit data was assessed by the machine learning scheme and generated parameters which were classifiable by SVM above a random chance of 14% (Reang 9% to 28%). It was also shown that the selection of initial parameters had no distinct effect on the classification accuracy. Traditional classification approaches using spectral techniques such as Power Spectral Density Analysis (PSDA) and canonical correlation analysis (CCA) require a window period of data above 1 s to perform accurately enough for use in BCIs. The larger the window period of SSVEP data used the more the Information transfer rate (ITR) decreases. Undertaking a successful classification on only the initial 250 ms portions of SSVEP data would lead to an improved ITR and a BCI which is faster to use. Classification of each method was assessed at three SSVEP window periods (0.25, 0.5 and 1 s). Comparison of the three methods revealed that, on a whole CCA outperformed both the PSDA and SVM methods. While PSDA performance was in-line with that of the SVM method. All methods performed poorly at the window period of 0.25 s with an average accuracy converging on random chance - 14%. At the window period of 0.5 s the CCA only marginally outperformed the SVM method and at a time of 1 s the CCA method significantly (p<0.05) outperformed the SVM method. While the SVMs tended to improve with window period the results were not generally significant. It was found that certain SVMs (Representing a unique combination of subject, initial conditions and window period) achieved an accuracy as high as 30%. For a few instances the accuracy was comparable to the CCA method with a significance of 5%. While we were unable to predict which SVM would perform well for a given subject, it was demonstrated that with further refinement this novel method may produce results similar to or better than that of CCA

    Data Analytics in Steady-State Visual Evoked Potential-based Brain-Computer Interface: A Review

    Get PDF
    Electroencephalograph (EEG) has been widely applied for brain-computer interface (BCI) which enables paralyzed people to directly communicate with and control of external devices, due to its portability, high temporal resolution, ease of use and low cost. Of various EEG paradigms, steady-state visual evoked potential (SSVEP)-based BCI system which uses multiple visual stimuli (such as LEDs or boxes on a computer screen) flickering at different frequencies has been widely explored in the past decades due to its fast communication rate and high signal-to-noise ratio. In this paper, we review the current research in SSVEP-based BCI, focusing on the data analytics that enables continuous, accurate detection of SSVEPs and thus high information transfer rate. The main technical challenges, including signal pre-processing, spectrum analysis, signal decomposition, spatial filtering in particular canonical correlation analysis and its variations, and classification techniques are described in this paper. Research challenges and opportunities in spontaneous brain activities, mental fatigue, transfer learning as well as hybrid BCI are also discussed

    Control a Robot via VEP Using Emotiv EPOC

    Get PDF
    Antud töö kirjeldab visuaalse stiimuliga esilekutsutud potentsiaalidel pĂ”hinevat aju ning arvuti vahelist liidest (AAL), mis loodi antud töö praktilise osana. AALi saab kasutada aju ja seadme vahelise otsese suhtluskanali loomiseks, mis tĂ€hendab, et seadmega suhtlemiseks pole vaja nuppe vajutada, piisab vaid visuaalsete stiimulite vaatamisest. Efektiivne AAL vĂ”imaldaks raske puudega isikutel nĂ€iteks elektroonilist ratastooli juhtida. Antud töö osana loodud AAL kasutab tuntud kanoonilise korrelatsiooni- ja vĂ”imsusspektri analĂŒĂŒsi meetodeid ning uuendusena kombineerib need kaks meetodit ĂŒheks teineteist tĂ€iendavaks meetodiks. Kahe meetodi kombinatsioon muudab AALi tĂ€psemaks. AALi testiti antud töös vaid pealiskaudselt ning tulemused on jĂ€rgnevad: ĂŒhe kĂ€su edastamise aeg 2,61 s, tĂ€psus 85,81% ning informatsiooni edastamise kiirus 27,73 bitt/min. Antud AAL on avatud lĂ€htekoodiga, kirjutatud Python 2.7 programmeerimiskeeles, sisaldab graafilist kasutajaliidest ning kasutab aju tegevuse mÔÔtmiseks elektroensefalograafia (EEG) seadet Emotiv EPOC. AALi kasutamiseks on vaja ainult arvutit ja Emotiv EPOC seadet. Koodi muutes on vĂ”imalik kasutada ka teisi EEG seadmeid.This thesis describes an SSVEP-based BCI implemented as a practical part of this work. One possible usage of a BCI that efficiently implements a communication channel between the brain and an external device would be to help severely disabled people to control devices that currently require pushing buttons, for example an electric wheelchair. The BCI implemented as a part of this thesis uses widely known PSDA and CCA feature extraction methods and introduces a new way to combine these methods. Combining different methods improves the performance of a BCI. The application was tested only superficially and the following results were obtained: 2.61 s target detection time, 85.81% accuracy and 27.73 bits/min ITR. The implemented BCI is open-source, written in Python 2.7, has graphical user interface and uses inexpensive EEG device called Emotiv EPOC. The BCI requires only a computer and Emotiv EPOC, no additional hardware is needed. Different EEG devices could be used after modifying the code

    Enhancement and optimization of a multi-command-based brain-computer interface

    Get PDF
    Brain-computer interfaces (BCI) assist disabled person to control many appliances without any physically interaction (e.g., pressing a button). SSVEP is brain activities elicited by evoked signals that are observed by visual stimuli paradigm. In this dissertation were addressed the problems which are oblige more usability of BCI-system by optimizing and enhancing the performance using particular design. Main contribution of this work is improving brain reaction response depending on focal approaches

    Classification of Frequency and Phase Encoded Steady State Visual Evoked Potentials for Brain Computer Interface Speller Applications using Convolutional Neural Networks

    Get PDF
    Over the past decade there have been substantial improvements in vision based Brain-Computer Interface (BCI) spellers for quadriplegic patient populations. This thesis contains a review of the numerous bio-signals available to BCI researchers, as well as a brief chronology of foremost decoding methodologies used to date. Recent advances in classification accuracy and information transfer rate can be primarily attributed to time consuming patient specific parameter optimization procedures. The aim of the current study was to develop analysis software with potential ‘plug-in-and-play’ functionality. To this end, convolutional neural networks, presently established as state of the art analytical techniques for image processing, were utilized. The thesis herein defines deep convolutional neural network architecture for the offline classification of phase and frequency encoded SSVEP bio-signals. Networks were trained using an extensive 35 participant open source Electroencephalographic (EEG) benchmark dataset (Department of Bio-medical Engineering, Tsinghua University, Beijing). Average classification accuracies of 82.24% and information transfer rates of 22.22 bpm were achieved on a BCI naïve participant dataset for a 40 target alphanumeric display, in absence of any patient specific parameter optimization

    Development of a practical and mobile brain-computer communication device for profoundly paralyzed individuals

    Full text link
    Thesis (Ph.D.)--Boston UniversityBrain-computer interface (BCI) technology has seen tremendous growth over the past several decades, with numerous groundbreaking research studies demonstrating technical viability (Sellers et al., 2010; Silvoni et al., 2011). Despite this progress, BCIs have remained primarily in controlled laboratory settings. This dissertation proffers a blueprint for translating research-grade BCI systems into real-world applications that are noninvasive and fully portable, and that employ intelligent user interfaces for communication. The proposed architecture is designed to be used by severely motor-impaired individuals, such as those with locked-in syndrome, while reducing the effort and cognitive load needed to communicate. Such a system requires the merging of two primary research fields: 1) electroencephalography (EEG)-based BCIs and 2) intelligent user interface design. The EEG-based BCI portion of this dissertation provides a history of the field, details of our software and hardware implementation, and results from an experimental study aimed at verifying the utility of a BCI based on the steady-state visual evoked potential (SSVEP), a robust brain response to visual stimulation at controlled frequencies. The visual stimulation, feature extraction, and classification algorithms for the BCI were specially designed to achieve successful real-time performance on a laptop computer. Also, the BCI was developed in Python, an open-source programming language that combines programming ease with effective handling of hardware and software requirements. The result of this work was The Unlock Project app software for BCI development. Using it, a four-choice SSVEP BCI setup was implemented and tested with five severely motor-impaired and fourteen control participants. The system showed a wide range of usability across participants, with classification rates ranging from 25-95%. The second portion of the dissertation discusses the viability of intelligent user interface design as a method for obtaining a more user-focused vocal output communication aid tailored to motor-impaired individuals. A proposed blueprint of this communication "app" was developed in this dissertation. It would make use of readily available laptop sensors to perform facial recognition, speech-to-text decoding, and geo-location. The ultimate goal is to couple sensor information with natural language processing to construct an intelligent user interface that shapes communication in a practical SSVEP-based BCI

    A Novel Approach Of Independent Brain-computer Interface Based On SSVEP

    Get PDF
    Durante os Ășltimos dez anos, as Interfaces CĂ©rebro Computador (ICC) baseadas em Potenciais Evocados Visuais de Regime Permanente (SSVEP) tĂȘm chamado a atenção de muitos pesquisadores devido aos resultados promissores e as altas taxas de precisĂŁo atingidas. Este tipo de ICC permite que pessoas com dificuldades motoras severas possam se comunicar com o mundo exterior atravĂ©s da modulação da atenção visual a luzes piscantes com frequĂȘncia determinada. Esta Tese de Doutorado tem o intuito de desenvolver um novo enfoque dentro das chamadas ICC Independentes, nas quais os usuĂĄrios nĂŁo necessitam executar tarefas neuromusculares para seleção visual de objetivos especĂ­ficos, caracterĂ­stica que a distingue das tradicionais ICCs-SSVEP. Assim, pessoas com difculdades motoras severas, como pessoas com Esclerose Lateral AmiotrĂłfca (ELA), contam com uma nova alternativa de se comunicar atravĂ©s de sinais cerebrais. Diversas contribuiçÔes foram realizadas neste trabalho, como, por exemplo, melhoria do algoritmo extrator de caracterĂ­sticas, denominado Índice de Sincronização MultivariĂĄvel (ou MSI, do InglĂȘs), para a detecção de potenciais evocados; desenvolvimento de um novo mĂ©todo de detecção de potenciais evocados atravĂ©s da correlação entre modelos multidimensionais (tensores); o desenvolvimento do primeiro estudo sobre a in&#64258;uĂȘncia de estĂ­mulos coloridos na detecção de SSVEPs usando LEDs; a aplicação do conceito de CompressĂŁo na detecção de SSVEPs; e, fnalmente, o desenvolvimento de uma nova ICC independente que utiliza o enfoque de Percepção Fundo-Figura (ou FGP, do InglĂȘs)

    A MUSIC-based method for SSVEP signal processing

    Get PDF
    The research on brain computer interfaces (BCIs) has become a hotspot in recent years because it offers benefit to disabled people to communicate with the outside world. Steady state visual evoked potential (SSVEP)-based BCIs are more widely used because of higher signal to noise ratio and greater information transfer rate compared with other BCI techniques. In this paper, a multiple signal classification based method was proposed for multi-dimensional SSVEP feature extraction. 2-second data epochs from four electrodes achieved excellent accuracy rates including idle state detection. In some asynchronous mode experiments, the recognition accuracy reached up to 100 %. The experimental results showed that the proposed method attained good frequency resolution. In most situations, the recognition accuracy was higher than canonical correlation analysis, which is a typical method for multi-channel SSVEP signal processing. Also, a virtual keyboard was successfully controlled by different subjects in an unshielded environment, which proved the feasibility of the proposed method for multi-dimensional SSVEP signal processing in practical applications

    Towards improved visual stimulus discrimination in an SSVEP BCI

    Get PDF
    The dissertation investigated the influence of stimulus characteristics, electroencephalographic (EEG) electrode location and three signal processing methods on the spectral signal to noise ratio (SNR) of Steady State Visual Evoked Potentials (SSVEPs) with a view for use in Brain-Computer Interfaces (BCIs). It was hypothesised that the new spectral baseline processing method introduced here, termed the 'activity baseline', would result in an improved SNR
    • 

    corecore