109 research outputs found

    An elitist quantum-inspired evolutionary algorithm for the flexible job-shop scheduling problem

    Get PDF
    The flexible job shop scheduling problem (FJSP) is vital to manufacturers especially in today’s constantly changing environment. It is a strongly NP-hard problem and therefore metaheuristics or heuristics are usually pursued to solve it. Most of the existing metaheuristics and heuristics, however, have low efficiency in convergence speed. To overcome this drawback, this paper develops an elitist quantum-inspired evolutionary algorithm. The algorithm aims to minimise the maximum completion time (makespan). It performs a global search with the quantum-inspired evolutionary algorithm and a local search with a method that is inspired by the motion mechanism of the electrons around an atomic nucleus. Three novel algorithms are proposed and their effect on the whole search is discussed. The elitist strategy is adopted to prevent the optimal solution from being destroyed during the evolutionary process. The results show that the proposed algorithm outperforms the best-known algorithms for FJSPs on most of the FJSP benchmarks

    Heuristic scheduling algorithms for dedicated and flexible manufacturing systems

    Get PDF
    Imperial Users onl

    Satisfying flexible due dates in fuzzy job shop by means of hybrid evolutionary algorithms

    Get PDF
    This paper tackles the job shop scheduling problem with fuzzy sets modelling uncertain durations and flexible due dates. The objective is to achieve high-service level by maximising due-date satisfaction, considering two different overall satisfaction measures as objective functions. We show how these functions model different attitudes in the framework of fuzzy multicriteria decision making and we define a measure of solution robustness based on an existing a-posteriori semantics of fuzzy schedules to further assess the quality of the obtained solutions. As solving method, we improve a memetic algorithm from the literature by incorporating a new heuristic mechanism to guide the search through plateaus of the fitness landscape. We assess the performance of the resulting algorithm with an extensive experimental study, including a parametric analysis, and a study of the algorithm’s components and synergy between them. We provide results on a set of existing and new benchmark instances for fuzzy job shop with flexible due dates that show the competitiveness of our method.This research has been supported by the Spanish Government under research grant TIN2016-79190-R

    Optimal scheduling of field activities using constraint satisfaction problem theory

    Get PDF
    The challenge of identifying problematic wells and planning their workover operations is common in oil and gas fields. On top of this, the well intervention resources are seldom easily accessible so it is crucial to target the right set of wells at the right time. Oil and gas reservoirs are complex dynamic systems the production and injection patterns of which can significantly affect the reservoir and well response. This represents a complex mathematical optimisation problem where the overall life performance of the field strongly depends on the workover planning decisions. This work presents a reliable and effective tool that is able to screen and explore the large search space of the potential work-overs that adds value to the reservoir management process. The proposed solution considers the overall performance of the field throughout a specified period while respecting all operational limitations as well as considering the risks and costs of the interventions. The proposed workflow combines the commercial optimiser techniques with constraint satisfaction problem optimiser to identify the optimal workover scheduling. The schedule found is guaranteed to satisfy all predefined field constraints. The presented results showed better performance achieved by the proposed hybrid optimiser compared to classical gradient-free optimisation techniques such as Genetic Algorithm in maximising the defined objective function. The suggested workflow can greatly enhance the decisions related to field development and asset management involved with large number of wells and with limited intervention resources

    Application of lean scheduling and production control in non-repetitive manufacturing systems using intelligent agent decision support

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.Lean Manufacturing (LM) is widely accepted as a world-class manufacturing paradigm, its currency and superiority are manifested in numerous recent success stories. Most lean tools including Just-in-Time (JIT) were designed for repetitive serial production systems. This resulted in a substantial stream of research which dismissed a priori the suitability of LM for non-repetitive non-serial job-shops. The extension of LM into non-repetitive production systems is opposed on the basis of the sheer complexity of applying JIT pull production control in non-repetitive systems fabricating a high variety of products. However, the application of LM in job-shops is not unexplored. Studies proposing the extension of leanness into non-repetitive production systems have promoted the modification of pull control mechanisms or reconfiguration of job-shops into cellular manufacturing systems. This thesis sought to address the shortcomings of the aforementioned approaches. The contribution of this thesis to knowledge in the field of production and operations management is threefold: Firstly, a Multi-Agent System (MAS) is designed to directly apply pull production control to a good approximation of a real-life job-shop. The scale and complexity of the developed MAS prove that the application of pull production control in non-repetitive manufacturing systems is challenging, perplex and laborious. Secondly, the thesis examines three pull production control mechanisms namely, Kanban, Base Stock and Constant Work-in-Process (CONWIP) which it enhances so as to prevent system deadlocks, an issue largely unaddressed in the relevant literature. Having successfully tested the transferability of pull production control to non-repetitive manufacturing, the third contribution of this thesis is that it uses experimental and empirical data to examine the impact of pull production control on job-shop performance. The thesis identifies issues resulting from the application of pull control in job-shops which have implications for industry practice and concludes by outlining further research that can be undertaken in this direction

    Four decades of research on the open-shop scheduling problem to minimize the makespan

    Full text link
    One of the basic scheduling problems, the open-shop scheduling problem has a broad range of applications across different sectors. The problem concerns scheduling a set of jobs, each of which has a set of operations, on a set of different machines. Each machine can process at most one operation at a time and the job processing order on the machines is immaterial, i.e., it has no implication for the scheduling outcome. The aim is to determine a schedule, i.e., the completion times of the operations processed on the machines, such that a performance criterion is optimized. While research on the problem dates back to the 1970s, there have been reviving interests in the computational complexity of variants of the problem and solution methodologies in the past few years. Aiming to provide a complete road map for future research on the open-shop scheduling problem, we present an up-to-date and comprehensive review of studies on the problem that focuses on minimizing the makespan, and discuss potential research opportunities

    Production Scheduling

    Get PDF
    Generally speaking, scheduling is the procedure of mapping a set of tasks or jobs (studied objects) to a set of target resources efficiently. More specifically, as a part of a larger planning and scheduling process, production scheduling is essential for the proper functioning of a manufacturing enterprise. This book presents ten chapters divided into five sections. Section 1 discusses rescheduling strategies, policies, and methods for production scheduling. Section 2 presents two chapters about flow shop scheduling. Section 3 describes heuristic and metaheuristic methods for treating the scheduling problem in an efficient manner. In addition, two test cases are presented in Section 4. The first uses simulation, while the second shows a real implementation of a production scheduling system. Finally, Section 5 presents some modeling strategies for building production scheduling systems. This book will be of interest to those working in the decision-making branches of production, in various operational research areas, as well as computational methods design. People from a diverse background ranging from academia and research to those working in industry, can take advantage of this volume
    • 

    corecore