40 research outputs found

    Π£ΡΡ‚ΠΎΠΉΡ‡ΠΈΠ²ΠΎΡΡ‚ΡŒ слСТСния Π·Π° Π·Π°Π΄Π΅Ρ€ΠΆΠΊΠΎΠΉ Ρ„Π°Π·ΠΎΠΌΠ°Π½ΠΈΠΏΡƒΠ»ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… сигналов с Ρ€Π°ΡΡˆΠΈΡ€Π΅Π½ΠΈΠ΅ΠΌ спСктра Π² систСмах синхронизации радиотСхничСских систСм

    Get PDF
    The issues of ensuring the stability of delay tracking in synchronization systems of radio engineering systems when receiving phase-shift keyed signals with spectrum expansion based on pseudorandom sequences are considered. When working with moving objects, the delay of the received signal continuously changes, synchronization errors occur, and the quality of signal reception largely depends on the stability of the tracking scheme for the delay, characterized by the probability of tracking failure. Delay tracking is usually considered as the main task of the synchronization system of the considered radio systems with phase-manipulated signals with spectrum expansion based on pseudo-random sequences. The effect of synchronization errors when tracking the delay of a received phase-shift keyed signal with a spectrum extension based on pseudorandom sequences on the probability of tracking failure is studied. The calculation method is used to obtain families of dependences of the probability of tracking failure on the values of random and systematic components of the delay tracking error, normalized to the capture band of the time discriminator of the delay tracking scheme for various combinations of these parameters. The areas of weak and strong influence of the value of tracking errors over the delay of the received signal on the probability of tracking failure are determined. The nature of impact of random and systematic components of tracking error on the probability of failure of tracking was analyzed and it was found that in the General case is the ambiguity of normalized mean square of tracking error as the optimization criterion while minimizing the likelihood of tracking loss. Calculations performed for a wide range of changes in the normalized delay tracking errors show that to ensure a given quality of signal reception in a radio system with phase-shift keyed signals with spectrum expansion based on pseudorandom sequences, a joint choice of parameters of the delay tracking system that determine the value of random and systematic components of the tracking error is necessary. The results obtained can be used to analyze the characteristics of synchronization systems that monitor the parameters of received signals with a spectrum extension, and to justify the technical solutions of the synchronization system that provide the required quality of signal reception in information and measurement of radio-electronic systems.Π Π°ΡΡΠΌΠΎΡ‚Ρ€ΠΈΠ²Π°ΡŽΡ‚ΡΡ вопросы обСспСчСния устойчивости слСТСния Π·Π° Π·Π°Π΄Π΅Ρ€ΠΆΠΊΠΎΠΉ Π² систСмах синхронизации радиотСхничСских систСм ΠΏΡ€ΠΈ ΠΏΡ€ΠΈΠ΅ΠΌΠ΅ Ρ„Π°Π·ΠΎΠΌΠ°Π½ΠΈΠΏΡƒΠ»ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… сигналов с Ρ€Π°ΡΡˆΠΈΡ€Π΅Π½ΠΈΠ΅ΠΌ спСктра Π½Π° основС псСвдослучайных ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚Π΅ΠΉ. ΠŸΡ€ΠΈ Ρ€Π°Π±ΠΎΡ‚Π΅ с ΠΏΠΎΠ΄Π²ΠΈΠΆΠ½Ρ‹ΠΌΠΈ ΠΎΠ±ΡŠΠ΅ΠΊΡ‚Π°ΠΌΠΈ Π·Π°Π΄Π΅Ρ€ΠΆΠΊΠ° ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅ΠΌΠΎΠ³ΠΎ сигнала Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½ΠΎ мСняСтся, Π²ΠΎΠ·Π½ΠΈΠΊΠ°ΡŽΡ‚ ошибки синхронизации, ΠΈ качСство ΠΏΡ€ΠΈΠ΅ΠΌΠ° сигналов Π² Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ стСпСни зависит ΠΎΡ‚ устойчивости Ρ€Π°Π±ΠΎΡ‚Ρ‹ схСмы слСТСния Π·Π° Π·Π°Π΄Π΅Ρ€ΠΆΠΊΠΎΠΉ, Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΡƒΠ΅ΠΌΠΎΠΉ Π²Π΅Ρ€ΠΎΡΡ‚Π½ΠΎΡΡ‚ΡŒΡŽ срыва слСТСния. Π‘Π»Π΅ΠΆΠ΅Π½ΠΈΠ΅ Π·Π° Π·Π°Π΄Π΅Ρ€ΠΆΠΊΠΎΠΉ, ΠΊΠ°ΠΊ ΠΏΡ€Π°Π²ΠΈΠ»ΠΎ, рассматриваСтся Π² качСствС основной Π·Π°Π΄Π°Ρ‡ΠΈ синхронизации радиотСхничСских систСм с Ρ„Π°Π·ΠΎΠΌΠ°Π½ΠΈΠΏΡƒΠ»ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΌΠΈ сигналами с Ρ€Π°ΡΡˆΠΈΡ€Π΅Π½ΠΈΠ΅ΠΌ спСктра Π½Π° основС псСвдослучайных ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚Π΅ΠΉ. ИсслСдовано влияниС ошибок синхронизации ΠΏΡ€ΠΈ слСТСнии Π·Π° Π·Π°Π΄Π΅Ρ€ΠΆΠΊΠΎΠΉ ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅ΠΌΠΎΠ³ΠΎ Ρ„Π°Π·ΠΎΠΌΠ°Π½ΠΈΠΏΡƒΠ»ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ сигнала с Ρ€Π°ΡΡˆΠΈΡ€Π΅Π½ΠΈΠ΅ΠΌ спСктра Π½Π° основС псСвдослучайных ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚Π΅ΠΉ Π½Π° Π²Π΅Ρ€ΠΎΡΡ‚Π½ΠΎΡΡ‚ΡŒ срыва слСТСния. РасчСтным ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ сСмСйства зависимостСй вСроятности срыва слСТСния ΠΎΡ‚ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½ случайной ΠΈ систСматичСской ΡΠΎΡΡ‚Π°Π²Π»ΡΡŽΡ‰ΠΈΡ… ошибки слСТСния Π·Π° Π·Π°Π΄Π΅Ρ€ΠΆΠΊΠΎΠΉ, Π½ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… ΠΊ полосС Π·Π°Ρ…Π²Π°Ρ‚Π° Π²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ дискриминатора, ΠΏΡ€ΠΈ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… сочСтаниях этих ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ². ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Ρ‹ области слабого ΠΈ сильного влияния Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ ошибок слСТСния Π·Π° Π·Π°Π΄Π΅Ρ€ΠΆΠΊΠΎΠΉ ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅ΠΌΠΎΠ³ΠΎ сигнала Π½Π° Π²Π΅Ρ€ΠΎΡΡ‚Π½ΠΎΡΡ‚ΡŒ срыва слСТСния. ΠŸΡ€ΠΎΠ°Π½Π°Π»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ влияния случайной ΠΈ систСматичСской ΡΠΎΡΡ‚Π°Π²Π»ΡΡŽΡ‰ΠΈΡ… ошибки слСТСния Π·Π° Π·Π°Π΄Π΅Ρ€ΠΆΠΊΠΎΠΉ Π½Π° Π²Π΅Ρ€ΠΎΡΡ‚Π½ΠΎΡΡ‚ΡŒ срыва слСТСния. УстановлСно, Ρ‡Ρ‚ΠΎ Π² ΠΎΠ±Ρ‰Π΅ΠΌ случаС ΠΈΠΌΠ΅Π΅Ρ‚ мСсто Π½Π΅ΠΎΠ΄Π½ΠΎΠ·Π½Π°Ρ‡Π½ΠΎΡΡ‚ΡŒ срСднСго ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π° Π½ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ ошибки слСТСния Π·Π° Π·Π°Π΄Π΅Ρ€ΠΆΠΊΠΎΠΉ ΠΊΠ°ΠΊ критСрия ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΏΡ€ΠΈ Π²Ρ‹Π±ΠΎΡ€Π΅ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² систСмы синхронизации. РасчСты, ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π½Ρ‹Π΅ для ΡˆΠΈΡ€ΠΎΠΊΠΎΠ³ΠΎ Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π° измСнСния Π½ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… ошибок слСТСния Π·Π° Π·Π°Π΄Π΅Ρ€ΠΆΠΊΠΎΠΉ, ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°ΡŽΡ‚, Ρ‡Ρ‚ΠΎ для обСспСчСния Π·Π°Π΄Π°Π½Π½ΠΎΠ³ΠΎ качСства ΠΏΡ€ΠΈΠ΅ΠΌΠ° сигналов Π² радиотСхничСской систСмС с Ρ„Π°Π·ΠΎΠΌΠ°Π½ΠΈΠΏΡƒΠ»ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΌΠΈ сигналами с Ρ€Π°ΡΡˆΠΈΡ€Π΅Π½ΠΈΠ΅ΠΌ спСктра Π½Π° основС псСвдослучайных ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚Π΅ΠΉ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌ совмСстный Π²Ρ‹Π±ΠΎΡ€ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² систСмы синхронизации, ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡŽΡ‰ΠΈΡ… Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρƒ случайной ΠΈ систСматичСской ΡΠΎΡΡ‚Π°Π²Π»ΡΡŽΡ‰ΠΈΡ… ошибки слСТСния Π·Π° Π·Π°Π΄Π΅Ρ€ΠΆΠΊΠΎΠΉ. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½Ρ‹ ΠΏΡ€ΠΈ Π°Π½Π°Π»ΠΈΠ·Π΅ характСристик систСм синхронизации ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… ΠΈ ΠΈΠ·ΠΌΠ΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… радиотСхничСских систСм ΠΈ ΠΏΡ€ΠΈ обосновании тСхничСских Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΉ, ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡ΠΈΠ²Π°ΡŽΡ‰ΠΈΡ… Ρ‚Ρ€Π΅Π±ΡƒΠ΅ΠΌΠΎΠ΅ качСство ΠΏΡ€ΠΈΠ΅ΠΌΠ° Ρ„Π°Π·ΠΎΠΌΠ°Π½ΠΈΠΏΡƒΠ»ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… сигналов с Ρ€Π°ΡΡˆΠΈΡ€Π΅Π½ΠΈΠ΅ΠΌ спСктра Π½Π° основС псСвдослучайных ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚Π΅ΠΉ

    Π£ΡΡ‚ΠΎΠΉΡ‡ΠΈΠ²ΠΎΡΡ‚ΡŒ слСТСния Π·Π° Π·Π°Π΄Π΅Ρ€ΠΆΠΊΠΎΠΉ Ρ„Π°Π·ΠΎΠΌΠ°Π½ΠΈΠΏΡƒΠ»ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… сигналов с Ρ€Π°ΡΡˆΠΈΡ€Π΅Π½ΠΈΠ΅ΠΌ спСктра Π² систСмах синхронизации радиотСхничСских систСм

    Get PDF
    Π Π°ΡΡΠΌΠΎΡ‚Ρ€ΠΈΠ²Π°ΡŽΡ‚ΡΡ вопросы обСспСчСния устойчивости слСТСния Π·Π° Π·Π°Π΄Π΅Ρ€ΠΆΠΊΠΎΠΉ Π² систСмах синхронизации радиотСхничСских систСм ΠΏΡ€ΠΈ ΠΏΡ€ΠΈΠ΅ΠΌΠ΅ Ρ„Π°Π·ΠΎΠΌΠ°Π½ΠΈΠΏΡƒΠ»ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… сигналов с Ρ€Π°ΡΡˆΠΈΡ€Π΅Π½ΠΈΠ΅ΠΌ спСктра Π½Π° основС псСвдослучайных ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚Π΅ΠΉ. ΠŸΡ€ΠΈ Ρ€Π°Π±ΠΎΡ‚Π΅ с ΠΏΠΎΠ΄Π²ΠΈΠΆΠ½Ρ‹ΠΌΠΈ ΠΎΠ±ΡŠΠ΅ΠΊΡ‚Π°ΠΌΠΈ Π·Π°Π΄Π΅Ρ€ΠΆΠΊΠ° ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅ΠΌΠΎΠ³ΠΎ сигнала Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½ΠΎ мСняСтся, Π²ΠΎΠ·Π½ΠΈΠΊΠ°ΡŽΡ‚ ошибки синхронизации, ΠΈ качСство ΠΏΡ€ΠΈΠ΅ΠΌΠ° сигналов Π² Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ стСпСни зависит ΠΎΡ‚ устойчивости Ρ€Π°Π±ΠΎΡ‚Ρ‹ схСмы слСТСния Π·Π° Π·Π°Π΄Π΅Ρ€ΠΆΠΊΠΎΠΉ, Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΡƒΠ΅ΠΌΠΎΠΉ Π²Π΅Ρ€ΠΎΡΡ‚Π½ΠΎΡΡ‚ΡŒΡŽ срыва слСТСния. Π‘Π»Π΅ΠΆΠ΅Π½ΠΈΠ΅ Π·Π° Π·Π°Π΄Π΅Ρ€ΠΆΠΊΠΎΠΉ, ΠΊΠ°ΠΊ ΠΏΡ€Π°Π²ΠΈΠ»ΠΎ, рассматриваСтся Π² качСствС основной Π·Π°Π΄Π°Ρ‡ΠΈ синхронизации радиотСхничСских систСм с Ρ„Π°Π·ΠΎΠΌΠ°Π½ΠΈΠΏΡƒΠ»ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΌΠΈ сигналами с Ρ€Π°ΡΡˆΠΈΡ€Π΅Π½ΠΈΠ΅ΠΌ спСктра Π½Π° основС псСвдослучайных ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚Π΅ΠΉ. ИсслСдовано влияниС ошибок синхронизации ΠΏΡ€ΠΈ слСТСнии Π·Π° Π·Π°Π΄Π΅Ρ€ΠΆΠΊΠΎΠΉ ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅ΠΌΠΎΠ³ΠΎ Ρ„Π°Π·ΠΎΠΌΠ°Π½ΠΈΠΏΡƒΠ»ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ сигнала с Ρ€Π°ΡΡˆΠΈΡ€Π΅Π½ΠΈΠ΅ΠΌ спСктра Π½Π° основС псСвдослучайных ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚Π΅ΠΉ Π½Π° Π²Π΅Ρ€ΠΎΡΡ‚Π½ΠΎΡΡ‚ΡŒ срыва слСТСния. РасчСтным ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ сСмСйства зависимостСй вСроятности срыва слСТСния ΠΎΡ‚ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½ случайной ΠΈ систСматичСской ΡΠΎΡΡ‚Π°Π²Π»ΡΡŽΡ‰ΠΈΡ… ошибки слСТСния Π·Π° Π·Π°Π΄Π΅Ρ€ΠΆΠΊΠΎΠΉ, Π½ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… ΠΊ полосС Π·Π°Ρ…Π²Π°Ρ‚Π° Π²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ дискриминатора, ΠΏΡ€ΠΈ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… сочСтаниях этих ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ². ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Ρ‹ области слабого ΠΈ сильного влияния Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ ошибок слСТСния Π·Π° Π·Π°Π΄Π΅Ρ€ΠΆΠΊΠΎΠΉ ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅ΠΌΠΎΠ³ΠΎ сигнала Π½Π° Π²Π΅Ρ€ΠΎΡΡ‚Π½ΠΎΡΡ‚ΡŒ срыва слСТСния. ΠŸΡ€ΠΎΠ°Π½Π°Π»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ влияния случайной ΠΈ систСматичСской ΡΠΎΡΡ‚Π°Π²Π»ΡΡŽΡ‰ΠΈΡ… ошибки слСТСния Π·Π° Π·Π°Π΄Π΅Ρ€ΠΆΠΊΠΎΠΉ Π½Π° Π²Π΅Ρ€ΠΎΡΡ‚Π½ΠΎΡΡ‚ΡŒ срыва слСТСния. УстановлСно, Ρ‡Ρ‚ΠΎ Π² ΠΎΠ±Ρ‰Π΅ΠΌ случаС ΠΈΠΌΠ΅Π΅Ρ‚ мСсто Π½Π΅ΠΎΠ΄Π½ΠΎΠ·Π½Π°Ρ‡Π½ΠΎΡΡ‚ΡŒ срСднСго ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π° Π½ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ ошибки слСТСния Π·Π° Π·Π°Π΄Π΅Ρ€ΠΆΠΊΠΎΠΉ ΠΊΠ°ΠΊ критСрия ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΏΡ€ΠΈ Π²Ρ‹Π±ΠΎΡ€Π΅ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² систСмы синхронизации. РасчСты, ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π½Ρ‹Π΅ для ΡˆΠΈΡ€ΠΎΠΊΠΎΠ³ΠΎ Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π° измСнСния Π½ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… ошибок слСТСния Π·Π° Π·Π°Π΄Π΅Ρ€ΠΆΠΊΠΎΠΉ, ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°ΡŽΡ‚, Ρ‡Ρ‚ΠΎ для обСспСчСния Π·Π°Π΄Π°Π½Π½ΠΎΠ³ΠΎ качСства ΠΏΡ€ΠΈΠ΅ΠΌΠ° сигналов Π² радиотСхничСской систСмС с Ρ„Π°Π·ΠΎΠΌΠ°Π½ΠΈΠΏΡƒΠ»ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΌΠΈ сигналами с Ρ€Π°ΡΡˆΠΈΡ€Π΅Π½ΠΈΠ΅ΠΌ спСктра Π½Π° основС псСвдослучайных ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚Π΅ΠΉ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌ совмСстный Π²Ρ‹Π±ΠΎΡ€ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² систСмы синхронизации, ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡŽΡ‰ΠΈΡ… Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρƒ случайной ΠΈ систСматичСской ΡΠΎΡΡ‚Π°Π²Π»ΡΡŽΡ‰ΠΈΡ… ошибки слСТСния Π·Π° Π·Π°Π΄Π΅Ρ€ΠΆΠΊΠΎΠΉ. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½Ρ‹ ΠΏΡ€ΠΈ Π°Π½Π°Π»ΠΈΠ·Π΅ характСристик систСм синхронизации ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… ΠΈ ΠΈΠ·ΠΌΠ΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… радиотСхничСских систСм ΠΈ ΠΏΡ€ΠΈ обосновании тСхничСских Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΉ, ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡ΠΈΠ²Π°ΡŽΡ‰ΠΈΡ… Ρ‚Ρ€Π΅Π±ΡƒΠ΅ΠΌΠΎΠ΅ качСство ΠΏΡ€ΠΈΠ΅ΠΌΠ° Ρ„Π°Π·ΠΎΠΌΠ°Π½ΠΈΠΏΡƒΠ»ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… сигналов с Ρ€Π°ΡΡˆΠΈΡ€Π΅Π½ΠΈΠ΅ΠΌ спСктра Π½Π° основС псСвдослучайных ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚Π΅ΠΉ

    TDRSS telecommunications study. Phase 1: Final report

    Get PDF
    A parametric analysis of the telecommunications support capability of the Tracking and Data Relay Satellite System (TDRSS) was performed. Emphasis was placed on maximizing support capability provided to the user while minimizing impact on the user spacecraft. This study evaluates the present TDRSS configuration as presented in the TDRSS Definition Phase Study Report, December 1973 to determine potential changes for improving the overall performance. In addition, it provides specifications of the user transponder equipment to be used in the TDRSS

    Adaptive Interference Mitigation in GPS Receivers

    Get PDF
    Satellite navigation systems (GNSS) are among the most complex radio-navigation systems, providing positioning, navigation, and timing (PNT) information. A growing number of public sector and commercial applications rely on the GNSS PNT service to support business growth, technical development, and the day-to-day operation of technology and socioeconomic systems. As GNSS signals have inherent limitations, they are highly vulnerable to intentional and unintentional interference. GNSS signals have spectral power densities far below ambient thermal noise. Consequently, GNSS receivers must meet high standards of reliability and integrity to be used within a broad spectrum of applications. GNSS receivers must employ effective interference mitigation techniques to ensure robust, accurate, and reliable PNT service. This research aims to evaluate the effectiveness of the Adaptive Notch Filter (ANF), a precorrelation mitigation technique that can be used to excise Continuous Wave Interference (CWI), hop-frequency and chirp-type interferences from GPS L1 signals. To mitigate unwanted interference, state-of-the-art ANFs typically adjust a single parameter, the notch centre frequency, and zeros are constrained extremely close to unity. Because of this, the notch centre frequency converges slowly to the target frequency. During this slow converge period, interference leaks into the acquisition block, thus sabotaging the operation of the acquisition block. Furthermore, if the CWI continuously hops within the GPS L1 in-band region, the subsequent interference frequency is locked onto after a delay, which means constant interference occurs in the receiver throughout the delay period. This research contributes to the field of interference mitigation at GNSS's receiver end using adaptive signal processing, predominately for GPS. This research can be divided into three stages. I first designed, modelled and developed a Simulink-based GPS L1 signal simulator, providing a homogenous test signal for existing and proposed interference mitigation algorithms. Simulink-based GPS L1 signal simulator provided great flexibility to change various parameters to generate GPS L1 signal under different conditions, e.g. Doppler Shift, code phase delay and amount of propagation degradation. Furthermore, I modelled three acquisition schemes for GPS signals and tested GPS L1 signals acquisition via coherent and non-coherent integration methods. As a next step, I modelled different types of interference signals precisely and implemented and evaluated existing adaptive notch filters in MATLAB in terms of Carrier to Noise Density (\u1d436/\u1d4410), Signal to Noise Ratio (SNR), Peak Degradation Metric, and Mean Square Error (MSE) at the output of the acquisition module in order to create benchmarks. Finally, I designed, developed and implemented a novel algorithm that simultaneously adapts both coefficients in lattice-based ANF. Mathematically, I derived the full-gradient term for the notch's bandwidth parameter adaptation and developed a framework for simultaneously adapting both coefficients of a lattice-based adaptive notch filter. I evaluated the performance of existing and proposed interference mitigation techniques under different types of interference signals. Moreover, I critically analysed different internal signals within the ANF structure in order to develop a new threshold parameter that resets the notch bandwidth at the start of each subsequent interference frequency. As a result, I further reduce the complexity of the structural implementation of lattice-based ANF, allowing for efficient hardware realisation and lower computational costs. It is concluded from extensive simulation results that the proposed fully adaptive lattice-based provides better interference mitigation performance and superior convergence properties to target frequency compared to traditional ANF algorithms. It is demonstrated that by employing the proposed algorithm, a receiver is able to operate with a higher dynamic range of JNR than is possible with existing methods. This research also presents the design and MATLAB implementation of a parameterisable Complex Adaptive Notch Filer (CANF). Present analysis on higher order CANF for detecting and mitigating various types of interference for complex baseband GPS L1 signals. In the end, further research was conducted to suppress interference in the GPS L1 signal by exploiting autocorrelation properties and discarding some portion of the main lobe of the GPS L1 signal. It is shown that by removing 30% spectrum of the main lobe, either from left, right, or centre, the GPS L1 signal is still acquirable

    Sequential detection methods for spread-spectrum code acquisition

    Get PDF

    Deep Space Telecommunications Systems Engineering

    Get PDF
    Descriptive and analytical information useful for the optimal design, specification, and performance evaluation of deep space telecommunications systems is presented. Telemetry, tracking, and command systems, receiver design, spacecraft antennas, frequency selection, interference, and modulation techniques are addressed

    Proceedings of the Second International Mobile Satellite Conference (IMSC 1990)

    Get PDF
    Presented here are the proceedings of the Second International Mobile Satellite Conference (IMSC), held June 17-20, 1990 in Ottawa, Canada. Topics covered include future mobile satellite communications concepts, aeronautical applications, modulation and coding, propagation and experimental systems, mobile terminal equipment, network architecture and control, regulatory and policy considerations, vehicle antennas, and speech compression

    Proceedings of the Third International Mobile Satellite Conference (IMSC 1993)

    Get PDF
    Satellite-based mobile communications systems provide voice and data communications to users over a vast geographic area. The users may communicate via mobile or hand-held terminals, which may also provide access to terrestrial cellular communications services. While the first and second International Mobile Satellite Conferences (IMSC) mostly concentrated on technical advances, this Third IMSC also focuses on the increasing worldwide commercial activities in Mobile Satellite Services. Because of the large service areas provided by such systems, it is important to consider political and regulatory issues in addition to technical and user requirements issues. Topics covered include: the direct broadcast of audio programming from satellites; spacecraft technology; regulatory and policy considerations; advanced system concepts and analysis; propagation; and user requirements and applications
    corecore