102 research outputs found

    Channel coded iterative center-shifting K-best sphere detection for rank-deficient systems

    No full text
    Based on an EXtrinsic Information Transfer (EXIT) chart assisted receiver design, a low-complexity near-Maximum A Posteriori (MAP) detector is constructed for high-throughput MIMO systems. A high throughput is achieved by invoking high-order modulation schemes and/or multiple transmit antennas, while employing a novel sphere detector (SD) termed as a center-shifting SD scheme, which updates the SD’s search center during its consecutive iterations with the aid of channel decoder. Two low-complexity iterative center-shifting SD aided receiver architectures are investigated, namely the direct-hard-decision centershifting (DHDC) and the direct-soft-decision center-shifting (DSDC) schemes. Both of them are capable of attaining a considerable memory and complexity reduction over the conventional SD-aided iterative benchmark receiver. For example, the DSDC scheme reduces the candidate-list-generation-related and extrinsic-LLR-calculation related complexity by a factor of 3.5 and 16, respectively. As a further benefit, the associated memory requirements were also reduced by a factor of 16

    Exploiting spatial modulation and analog network coding for the design of energy-efficient wireless networks

    Get PDF
    As the data rate demands of the cellular users increase, together with their number, it is expected that unprecedented capacity demands should be met in wireless networks in the forthcoming years. However, the energy consumption to meet these rates is expected to increase exponentially, according to trends. This can become a serious issue for both the environment, due to CO2 emissions, and the operators, which will have to pay more for electricity. Hence, several energy-efficient solutions have been proposed, such as multiple antenna systems, dynamic spectrum allocation, heterogeneous networks, and Network Coding, to name a few. Based on the above, the aim of this thesis to propose low-complexity and energy-efficient physical layer-based solutions compared to the already existing approaches, without sacrificing the quality of performance. More specifically, the focus is on the technologies of Spatial Modulation and Analog Network Coding. Both schemes offer the so-called multiplexing gain, which means that multiple streams can be transmitted without sacrificing resources, such as bandwidth. As far as Spatial Modulation is concerned, Spatial Modulation-based schemes are proposed that are more energy efficient than state-of-the-art technologies. Regarding Analog Network Coding, we study its implementation in relay-based scenarios and how it compares in terms of energy efficiency with conventional protocols, such as the time-division multiple access protocol. From the obtained results, the conclusion that can be drawn is that depending on the scenario both Spatial Modulation and Analog Network Coding can provide significant energy gains compared to existing technologies without sacrificing performance.A medida que las demandas de velocidad de datos de los usuarios de redes celulares aumentan, así como su número, se espera que las demandas de capacidad sin precedentes se deban cumplir en las redes inalámbricas en los próximos años. Sin embargo, se espera que aumente de forma exponencial el consumo de energía para satisfacer estas tasas, de acuerdo a las tendencias. Esto puede convertirse en un grave problema ambos para el medio ambiente, debido a las emisiones de CO2, y los operadores, que tendrán que pagar más por la electricidad. Por lo tanto, se han propuesto varias soluciones de eficiencia energética, tales como sistemas de múltiples antenas, la asignación de espectro dinámico, redes heterogéneas, y Network Coding, para nombrar unos pocos. Con base en lo anterior, el objetivo de esta tesis es proponer soluciones de baja complejidad y de eficiencia energética basadas en la capa física, en comparación con los enfoques ya existentes, sin sacrificar la calidad del funcionamiento. Más específicamente, la atención se centra en las tecnologías de Spatial Modulation y Analog Network Coding. Ambos esquemas ofrecen la llamada ganancia de multiplexación, lo que significa que múltiples flujos pueden ser transmitidos sin sacrificar recursos, tales como el ancho de banda. En lo que se refiere a Spatial Modulation, se proponen esquemas basados en Spatial Modulation que son más energéticamente que tecnologías ya existentes. En cuanto a Analog Network Coding, se estudia su aplicación en escenarios inalámbricos basados en relays y cómo se compara en términos de eficiencia energética con los protocolos convencionales, tales como el protocolo de acceso mútiple por división de tiempo. De los resultados obtenidos, la conclusión que se puede extraer es que dependiendo del escenario, ambos Spatial Modulation y Analog Network Coding pueden proporcionar beneficios significativos de energía en comparación con las tecnologías existentes sin sacrificar el funcionamiento

    Speech and crosstalk detection in multichannel audio

    Get PDF
    The analysis of scenarios in which a number of microphones record the activity of speakers, such as in a round-table meeting, presents a number of computational challenges. For example, if each participant wears a microphone, speech from both the microphone's wearer (local speech) and from other participants (crosstalk) is received. The recorded audio can be broadly classified in four ways: local speech, crosstalk plus local speech, crosstalk alone and silence. We describe two experiments related to the automatic classification of audio into these four classes. The first experiment attempted to optimize a set of acoustic features for use with a Gaussian mixture model (GMM) classifier. A large set of potential acoustic features were considered, some of which have been employed in previous studies. The best-performing features were found to be kurtosis, "fundamentalness," and cross-correlation metrics. The second experiment used these features to train an ergodic hidden Markov model classifier. Tests performed on a large corpus of recorded meetings show classification accuracies of up to 96%, and automatic speech recognition performance close to that obtained using ground truth segmentation

    Dispensing with channel estimation: differentially modulated cooperative wireless communications

    No full text
    As a benefit of bypassing the potentially excessive complexity and yet inaccurate channel estimation, differentially encoded modulation in conjunction with low-complexity noncoherent detection constitutes a viable candidate for user-cooperative systems, where estimating all the links by the relays is unrealistic. In order to stimulate further research on differentially modulated cooperative systems, a number of fundamental challenges encountered in their practical implementations are addressed, including the time-variant-channel-induced performance erosion, flexible cooperative protocol designs, resource allocation as well as its high-spectral-efficiency transceiver design. Our investigations demonstrate the quantitative benefits of cooperative wireless networks both from a pure capacity perspective as well as from a practical system design perspective

    An Information Theoretic Approach to Speaker Diarization of Meeting Recordings

    Get PDF
    In this thesis we investigate a non parametric approach to speaker diarization for meeting recordings based on an information theoretic framework. The problem is formulated using the Information Bottleneck (IB) principle. Unlike other approaches where the distance between speaker segments is arbitrarily introduced, the IB method seeks the partition that maximizes the mutual information between observations and variables relevant for the problem while minimizing the distortion between observations. The distance between speech segments is selected as the Jensen-Shannon divergence as it arises from the IB objective function optimization. In the first part of the thesis, we explore IB based diarization with Mel frequency cepstral coefficients (MFCC) as input features. We study issues related to IB based speaker diarization such as optimizing the IB objective function, criteria for inferring the number of speakers. Furthermore, we benchmark the proposed system against a state-of-the-art systemon the NIST RT06 (Rich Transcription) meeting data for speaker diarization. The IB based system achieves similar speaker error rates (16.8%) as compared to a baseline HMM/GMM system (17.0%). This approach being non parametric clustering, perform diarization six times faster than realtime while the baseline is slower than realtime. The second part of thesis proposes a novel feature combination system in the context of IB diarization. Both speaker clustering and speaker realignment steps are discussed. In contrary to current systems, the proposed method avoids the feature combination by averaging log-likelihood scores. Two different sets of features were considered – (a) combination of MFCC features with time delay of arrival features (b) a four feature stream combination that combines MFCC, TDOA, modulation spectrum and frequency domain linear prediction. Experiments show that the proposed system achieve 5% absolute improvement over the baseline in case of two feature combination, and 7% in case of four feature combination. The increase in algorithm complexity of the IB system is minimal with more features. The system with four feature input performs in real time that is ten times faster than the GMM based system
    corecore