319 research outputs found

    Analysis of Internally Bandlimited Multistage Cubic-Term Generators for RF Receivers

    Get PDF
    Adaptive feedforward error cancellation applied to correct distortion arising from third-order nonlinearities in RF receivers requires low-noise low-power reference cubic nonidealities. Multistage cubic-term generators utilizing cascaded nonlinear operations are ideal in this regard, but the frequency response of the interstage circuitry can introduce errors into the cubing operation. In this paper, an overview of the use of cubic-term generators in receivers relative to other applications is presented. An interstage frequency response plan is presented for a receiver cubic-term generator and is shown to function for arbitrary three-signal third-order intermodulation generation. The noise of such circuits is also considered and is shown to depend on the total incoming signal power across a particular frequency band. Finally, the effects of the interstage group delay are quantified in the context of a relevant communication standard requirement

    Design and implementation of an ETSI-SDR OFDM transmitter with power amplifier linearizer

    Get PDF
    Satellite radio has attained great popularity because of its wide range of geographical coverage and high signal quality as compared to the terrestrial broadcasts. Most Satellite Digital Radio (SDR) based systems favor multi-carrier transmission schemes, especially, orthogonal frequency division multiplexing (OFDM) transmission because of high data transfer rate and spectral efficiency. It is a challenging task to find a suitable platform that supports fast data rates and superior processing capabilities required for the development and deployment of the new SDR standards. Field programmable gate array (FPGA) devices have the potential to become suitable development platform for such standards. Another challenging factor in SDR systems is the distortion of variable envelope signals used in OFDM transmission by the nonlinear RF power amplifiers (PA) used in the base station transmitters. An attractive option is to use a linearizer that would compensate for the nonlinear effects of the PA. In this research, an OFDM transmitter, according to European Telecommunications Standard Institute (ETSI) SDR Technical Specifications 2007-2008, was designed and implemented on a low-cost Xilinx FPGA platform. A weakly nonlinear PA, operating in the L-band SDR frequency (1.450-1.490GHz), was used for signal transmission. An FPGA-based, low-cost, adaptive linearizer was designed and implemented based on the digital predistortion (DPD) reference design from Xilinx, to correct the distortion effects of the PA on the transmitted signal

    Wideband CMOS Data Converters for Linear and Efficient mmWave Transmitters

    Get PDF
    With continuously increasing demands for wireless connectivity, higher\ua0carrier frequencies and wider bandwidths are explored. To overcome a limited transmit power at these higher carrier frequencies, multiple\ua0input multiple output (MIMO) systems, with a large number of transmitters\ua0and antennas, are used to direct the transmitted power towards\ua0the user. With a large transmitter count, each individual transmitter\ua0needs to be small and allow for tight integration with digital circuits. In\ua0addition, modern communication standards require linear transmitters,\ua0making linearity an important factor in the transmitter design.In this thesis, radio frequency digital-to-analog converter (RF-DAC)-based transmitters are explored. They shift the transition from digital\ua0to analog closer to the antennas, performing both digital-to-analog\ua0conversion and up-conversion in a single block. To reduce the need for\ua0computationally costly digital predistortion (DPD), a linear and wellbehaved\ua0RF-DAC transfer characteristic is desirable. The combination\ua0of non-overlapping local oscillator (LO) signals and an expanding segmented\ua0non-linear RF-DAC scaling is evaluated as a way to linearize\ua0the transmitter. This linearization concept has been studied both for\ua0the linearization of the RF-DAC itself and for the joint linearization of\ua0the cascaded RF-DAC-based modulator and power amplifier (PA) combination.\ua0To adapt the linearization, observation receivers are needed.\ua0In these, high-speed analog-to-digital converters (ADCs) have a central\ua0role. A high-speed ADC has been designed and evaluated to understand\ua0how concepts used to increase the sample rate affect the dynamic performance

    On Out-of-Band Emissions of Quantized Precoding in Massive MU-MIMO-OFDM

    Full text link
    We analyze out-of-band (OOB) emissions in the massive multi-user (MU) multiple-input multiple-output (MIMO) downlink. We focus on systems in which the base station (BS) is equipped with low-resolution digital-to-analog converters (DACs) and orthogonal frequency-division multiplexing (OFDM) is used to communicate to the user equipments (UEs) over frequency-selective channels. We demonstrate that analog filtering in combination with simple frequency-domain digital predistortion (DPD) at the BS enables a significant reduction of OOB emissions, but degrades the signal-to-interference-noise-and-distortion ratio (SINDR) at the UEs and increases the peak-to-average power ratio (PAR) at the BS. We use Bussgang's theorem to characterize the tradeoffs between OOB emissions, SINDR, and PAR, and to study the impact of analog filters and DPD on the error-rate performance of the massive MU-MIMO-OFDM downlink. Our results show that by carefully tuning the parameters of the analog filters, one can achieve a significant reduction in OOB emissions with only a moderate degradation of error-rate performance and PAR.Comment: Presented at the 2017 Asilomar Conference on Signals, Systems, and Computers, 6 page

    Highly efficient linear CMOS power amplifiers for wireless communications

    Get PDF
    The rapidly expanding wireless market requires low cost, high integration and high performance of wireless communication systems. CMOS technology provides benefits of cost effectiveness and higher levels of integration. However, the design of highly efficient linear CMOS power amplifier that meets the requirement of advanced communication standards is a challenging task because of the inherent difficulties in CMOS technology. The objective of this research is to realize PAs for wireless communication systems that overcoming the drawbacks of CMOS process, and to develop design approaches that satisfying the demands of the industry. In this dissertation, a cascode bias technique is proposed for improving linearity and reliability of the multi-stage cascode CMOS PA. In addition, to achieve load variation immunity characteristic and to enhance matching and stability, a fully-integrated balanced PA is implemented in a 0.18-m CMOS process. A triple-mode balanced PA using switched quadrature coupler is also proposed, and this work saved a large amount of quiescent current and further improved the efficiency in the back-off power. For the low losses and a high quality factor of passive output combining, a transformer-based quadrature coupler was implemented using integrated passive device (IPD) process. Various practical approaches for linear CMOS PA are suggested with the verified results, and they demonstrate the potential PA design approach for WCDMA applications using a standard CMOS technology.PhDCommittee Chair: Kenney, J. Stevenson; Committee Member: Jongman Kim; Committee Member: Kohl, Paul A.; Committee Member: Kornegay, Kevin T.; Committee Member: Lee, Chang-H

    Dirty RF Signal Processing for Mitigation of Receiver Front-end Non-linearity

    Get PDF
    Moderne drahtlose Kommunikationssysteme stellen hohe und teilweise gegensätzliche Anforderungen an die Hardware der Funkmodule, wie z.B. niedriger Energieverbrauch, große Bandbreite und hohe Linearität. Die Gewährleistung einer ausreichenden Linearität ist, neben anderen analogen Parametern, eine Herausforderung im praktischen Design der Funkmodule. Der Fokus der Dissertation liegt auf breitbandigen HF-Frontends für Software-konfigurierbare Funkmodule, die seit einigen Jahren kommerziell verfügbar sind. Die praktischen Herausforderungen und Grenzen solcher flexiblen Funkmodule offenbaren sich vor allem im realen Experiment. Eines der Hauptprobleme ist die Sicherstellung einer ausreichenden analogen Performanz über einen weiten Frequenzbereich. Aus einer Vielzahl an analogen Störeffekten behandelt die Arbeit die Analyse und Minderung von Nichtlinearitäten in Empfängern mit direkt-umsetzender Architektur. Im Vordergrund stehen dabei Signalverarbeitungsstrategien zur Minderung nichtlinear verursachter Interferenz - ein Algorithmus, der besser unter "Dirty RF"-Techniken bekannt ist. Ein digitales Verfahren nach der Vorwärtskopplung wird durch intensive Simulationen, Messungen und Implementierung in realer Hardware verifiziert. Um die Lücken zwischen Theorie und praktischer Anwendbarkeit zu schließen und das Verfahren in reale Funkmodule zu integrieren, werden verschiedene Untersuchungen durchgeführt. Hierzu wird ein erweitertes Verhaltensmodell entwickelt, das die Struktur direkt-umsetzender Empfänger am besten nachbildet und damit alle Verzerrungen im HF- und Basisband erfasst. Darüber hinaus wird die Leistungsfähigkeit des Algorithmus unter realen Funkkanal-Bedingungen untersucht. Zusätzlich folgt die Vorstellung einer ressourceneffizienten Echtzeit-Implementierung des Verfahrens auf einem FPGA. Abschließend diskutiert die Arbeit verschiedene Anwendungsfelder, darunter spektrales Sensing, robuster GSM-Empfang und GSM-basiertes Passivradar. Es wird gezeigt, dass nichtlineare Verzerrungen erfolgreich in der digitalen Domäne gemindert werden können, wodurch die Bitfehlerrate gestörter modulierter Signale sinkt und der Anteil nichtlinear verursachter Interferenz minimiert wird. Schließlich kann durch das Verfahren die effektive Linearität des HF-Frontends stark erhöht werden. Damit wird der zuverlässige Betrieb eines einfachen Funkmoduls unter dem Einfluss der Empfängernichtlinearität möglich. Aufgrund des flexiblen Designs ist der Algorithmus für breitbandige Empfänger universal einsetzbar und ist nicht auf Software-konfigurierbare Funkmodule beschränkt.Today's wireless communication systems place high requirements on the radio's hardware that are largely mutually exclusive, such as low power consumption, wide bandwidth, and high linearity. Achieving a sufficient linearity, among other analogue characteristics, is a challenging issue in practical transceiver design. The focus of this thesis is on wideband receiver RF front-ends for software defined radio technology, which became commercially available in the recent years. Practical challenges and limitations are being revealed in real-world experiments with these radios. One of the main problems is to ensure a sufficient RF performance of the front-end over a wide bandwidth. The thesis covers the analysis and mitigation of receiver non-linearity of typical direct-conversion receiver architectures, among other RF impairments. The main focus is on DSP-based algorithms for mitigating non-linearly induced interference, an approach also known as "Dirty RF" signal processing techniques. The conceived digital feedforward mitigation algorithm is verified through extensive simulations, RF measurements, and implementation in real hardware. Various studies are carried out that bridge the gap between theory and practical applicability of this approach, especially with the aim of integrating that technique into real devices. To this end, an advanced baseband behavioural model is developed that matches to direct-conversion receiver architectures as close as possible, and thus considers all generated distortions at RF and baseband. In addition, the algorithm's performance is verified under challenging fading conditions. Moreover, the thesis presents a resource-efficient real-time implementation of the proposed solution on an FPGA. Finally, different use cases are covered in the thesis that includes spectrum monitoring or sensing, GSM downlink reception, and GSM-based passive radar. It is shown that non-linear distortions can be successfully mitigated at system level in the digital domain, thereby decreasing the bit error rate of distorted modulated signals and reducing the amount of non-linearly induced interference. Finally, the effective linearity of the front-end is increased substantially. Thus, the proper operation of a low-cost radio under presence of receiver non-linearity is possible. Due to the flexible design, the algorithm is generally applicable for wideband receivers and is not restricted to software defined radios

    Digital Signal Processing Techniques Applied to Radio over Fiber Systems

    Get PDF
    The dissertation aims to analyze different Radio over Fiber systems for the front-haul applications. Particularly, analog radio over fiber (A-RoF) are simplest and suffer from nonlinearities, therefore, mitigating such nonlinearities through digital predistortion are studied. In particular for the long haul A-RoF links, direct digital predistortion technique (DPDT) is proposed which can be applied to reduce the impairments of A-RoF systems due to the combined effects of frequency chirp of the laser source and chromatic dispersion of the optical channel. Then, indirect learning architecture (ILA) based structures namely memory polynomial (MP), generalized memory polynomial (GMP) and decomposed vector rotation (DVR) models are employed to perform adaptive digital predistortion with low complexities. Distributed feedback (DFB) laser and vertical capacity surface emitting lasers (VCSELs) in combination with single mode/multi-mode fibers have been linearized with different quadrature amplitude modulation (QAM) formats for single and multichannel cases. Finally, a feedback adaptive DPD compensation is proposed. Then, there is still a possibility to exploit the other realizations of RoF namely digital radio over fiber (D-RoF) system where signal is digitized and transmits the digitized bit streams via digital optical communication links. The proposed solution is robust and immune to nonlinearities up-to 70 km of link length. Lastly, in light of disadvantages coming from A-RoF and D-RoF, it is still possible to take only the advantages from both methods and implement a more recent form knows as Sigma Delta Radio over Fiber (S-DRoF) system. Second Order Sigma Delta Modulator and Multi-stAge-noise-SHaping (MASH) based Sigma Delta Modulator are proposed. The workbench has been evaluated for 20 MHz LTE signal with 256 QAM modulation. Finally, The 6x2 GSa/s sigma delta modulators are realized on FPGA to show a real time demonstration of S-DRoF system. The demonstration shows that S-DRoF is a competitive competitor for 5G sub-6GHz band applications

    High Linearity Millimeter Wave Power Amplifiers with Novel Linearizer Techniques

    No full text
    Millimeter-wave communications have experienced phenomenal growth in recent years when limited frequency spectrum is occupied by the ever-developing communication services. The power amplifier, as the key component in the transmitter/receiver module of communication systems, affects performance of the whole system directly and receives much attention. For minimized distortion and optimum system performance, the non-constant en- velope modulation schemes used in communication systems have challenging requirements on linearity. As linearity is related to communication quality directly, several linearization techniques, such as predistortion and feedforward, are applied to power amplifier design. Predistortion method has the advantages over other techniques in relatively simple struc- ture and reasonable linearity improvement. But current predistortion circuits have quite limited performance improvement and relatively large insertion loss, which indicate the need for further research. In most of millimeter-wave amplifier design, great effort has been spent on output power or gain, while linearity is often ignored. As almost all the predistortion circuits operate at the RF frequencies, the linearized millimeter-wave com- munication circuit is still relatively immature and very challenging. This project is dedicated to solve the linearity problem faced by millimeter-wave power amplifier in communication systems, which lacks of e®ective techniques in this field. Linearity improvement with the predistortion method will be the key issue in this project and some original ideas for predistortion circuit design will be applied to millimeter-wave amplifiers. In this thesis, several predistortion circuits with novel structure were proposed, which provide a new approach for linearity improvement for millimeter-wave power am- plifier. A millimeter-wave power ampli¯er for LMDS applications built on GaAs pHEMT technology was developed to a high engineering standard, which works as the test bench for linearization. Actual operation and parasitic elements at tens of gigahertz have been taken into consideration during the design. Firstly, two novel predistorter structures based on the amplifier were proposed, one is based on an amplifier with a fixed bias circuit and the other is based on an amplifier with a nonlinear signal dependant bias circuit. These novel structures can improve the linearity while improving other metrics simultaneously, which can effectively solve the problem of insertion loss faced by the conventional structures. Besides this, an original predistortion circuit design methodology derived from frequency to signal amplitude transformation was proposed. Based on this methodology, several transfer functions were proposed and related predistortion circuits were built to linearize the power amplifier. As this methodology is quite different from the traditional approach, it can improve the linearity signifficantly while other metrics are affected slightly and has a broad prospect for application
    corecore