6 research outputs found

    Mobility-adaptive clustering and network-layer multicasting in mobile ad hoc networks

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Design and Analysis of SD_DWCA - A Mobility based clustering of Homogeneous MANETs

    Full text link
    This paper deals with the design and analysis of the distributed weighted clustering algorithm SD_DWCA proposed for homogeneous mobile ad hoc networks. It is a connectivity, mobility and energy based clustering algorithm which is suitable for scalable ad hoc networks. The algorithm uses a new graph parameter called strong degree defined based on the quality of neighbours of a node. The parameters are so chosen to ensure high connectivity, cluster stability and energy efficient communication among nodes of high dynamic nature. This paper also includes the experimental results of the algorithm implemented using the network simulator NS2. The experimental results show that the algorithm is suitable for high speed networks and generate stable clusters with less maintenance overhead

    Design of Simulator for Energy Efficient Clustering in Mobile Ad Hoc Networks

    Get PDF
    The research on various issues in Mobile ad hoc networks are getting popularity because of its challenging nature and all time connectivity to communicate. MANET (Mobile Ad-hoc Networks) is a random deployable network where devices are mobile with dynamic topology. In the network topology, each device is termed as a node and the virtual connectivity among each node is termed as the link .Nodes in a network are dynamically organized into virtual partitions called clusters. Network simulators provide the platform to analyse and imitate the working of computer networks along with the typical devices, traffic and other entities. Cluster heads being the communication hotspots tend to drain its battery power rapidly while serving its member nodes. Further, energy consumption is a key factor that hinders the deploy ability of a real ad hoc and sensor network. It is due to the limited life time of the battery powered devices that motivates intense research into energy efficient design of operating systems, protocols and hardware devices. Clustering is a proven solution to preserve the battery power of certain nodes. In the mechanism of clustering, there exists a cluster head in every cluster that works similar to a base station in the cellular architecture. Cluster heads being the communication hotspots tend to drain its battery power rapidly while serving its member nodes. Further, energy consumption is a key factor that hinders the deploy ability of a real ad hoc and sensor network. It is due to the limited life time of the battery powered devices that motivates intense research into energy efficient design of operating systems, protocols and hardware devices. The mobile ad hoc network can be modelled as a unidirectional graph G = (V, L) where V is the set of mobile nodes and L is the set of links that exist between the nodes. We assume that there exists a bidirectional link L between the nodes and when the distance between the nodes < (transmission range) of the nodes. In the dynamic network the cardinality of the nodes remains constant, but the cardinality of links changes due to the mobility of the nodes. Network simulators are used by researchers, developers and engineers to design various kinds of networks, simulate and then analyze the effect of various parameters on the network performance. A typical network simulator encompasses a wide range of networking technologies and can help the users to build complex networks from basic building blocks such as a variety of nodes and links. The objective of our work is to design a simulator for energy efficient clustering so that the data flow as well as the control flow could be easily handled and maintained. The proposed energy efficient clustering algorithm is a distributed algorithm that takes into account the consumed battery power of a node and its average transmission power for serving the neighbour nodes as the parameters to decide its suitability to act as a cluster head. These two parameters are added with different weight factors to find the weights of the individual nodes. After the clusters are formed, gateway nodes are selected in the network that help for the inter cluster communication. The graph for the number of cluster heads selected for different number of nodes are also drawn to study the functionality of the simulator

    A Multi-Hop Weighted Clustering of Homogenous MANETs Using Combined Closeness Index

    Full text link
    In this paper, a new multi-hop weighted clustering procedure is proposed for homogeneous Mobile Ad hoc networks. The algorithm generates double star embedded non-overlapping cluster structures, where each cluster is managed by a leader node and a substitute for the leader node (in case of failure of leader node). The weight of a node is a linear combination of six different graph theoretic parameters which deal with the communication capability of a node both in terms of quality and quantity, the relative closeness relationship between network nodes and the maximum and average distance traversed by a node for effective communication. This paper deals with the design and analysis of the algorithm and some of the graph theoretic/structural properties of the clusters obtained are also discussed

    Mobility Metrics for Routing in MANETs

    No full text
    A Mobile Ad hoc Network (MANET) is a collection of wireless mobile nodes forming a temporary network without the need for base stations or any other pre–existing network infrastructure. In a peer-to-peer fashion, mobile nodes can communicate with each other by using wireless multihop communication. Due to its low cost, high flexibility, fast network establishment and self-reconfiguration, ad hoc networking has received much interest during the last ten years. However, without a fixed infrastructure, frequent path changes cause significant numbers of routing packets to discover new paths, leading to increased network congestion and transmission latency over fixed networks. Many on-demand routing protocols have been developed by using various routing mobility metrics to choose the most reliable routes, while dealing with the primary obstacle caused by node mobility. ¶ In the first part, we have developed an analysis framework for mobility metrics in random mobility model. ... ¶ In the second part, we investigate the mobility metric applications on caching strategies and hierarchy routing algorithm. ..

    Performance analysis of mobility-based d-hop (MobDHop) clustering algorithm for mobile ad hoc networks

    No full text
    10.1016/j.comnet.2005.12.013Computer Networks50173375-3399CNET
    corecore