184 research outputs found

    Performance Analysis of Output Threshold-Based Incremental Multiple-Relay Combining Scheme with Adaptive Modulation for Cooperative Networks

    Get PDF
    In this paper, we propose an output threshold-based incremental multiple-relay combining scheme for cooperative amplify-and-forward relay networks with nonidentically distributed relay channels. Specifically, in order to achieve the required performance, we consider both conventional incremental relaying and multiple-relay selection where relays are adaptively selected based on a predetermined output threshold. Moreover, the adaptive modulation technique is adopted by our proposed scheme for satisfying both the spectral efficiency and the required error rate. For the proposed scheme, we first derive an upper bound of the output combined signal-to-noise ratio and then provide its statistics such as cumulative distribution function (CDF), probability density function (PDF), and moment generating function (MGF) over independent, nonidentically distributed Rayleigh fading channels. Additionally, we analyze the system performance in terms of average spectral efficiency, average bit error rate, outage probability, and system complexity. Finally, numerical examples show that our proposed scheme leads to a certain performance improvement in the cooperative networks

    Adaptive Relay-Selection In Decode-And-Forward Cooperative Systems

    Get PDF
    In the past few years adaptive decode-and-forward cooperative diversity systems have been studied intensively in literature. Many schemes and protocols have been proposed to enhance the performance of the cooperative systems while trying to alleviate its drawbacks. One of the recent schemes that had been shown to give high improvements in performance is the best-relay selection scheme. In the best-relay selection scheme only one relaying nodes among the relays available in the system is selected to forward the source\u27s message to the destination. The best relay is selected as the relay node that can achieve the highest end-to-end signal-to-noise ratio (snr) at the destination node. Performance improvements have been reported as compared to regular fixed decode-and-forward relaying in which all relays are required to forward the source\u27s message to the destination in terms of spectral efficiency and diversity order. In this thesis, we use simulations to show the improvement in the outage performance of the best-relay selection scheme

    Two-path succesive relaying schemes in the presence of inter-relay interference

    Get PDF
    Relaying is a promising technique to improve wireless network performance. A conventional relay transmits and receives signals in two orthogonal channels due to half duplex constraint of wireless network. This results in inefficient use of spectral resources. Two-Path Successive Relaying (TPSR) has been proposed to recover loss in spectral efficiency. However, the performance of TPSR is degraded by Inter-Relay Interference (IRI). This thesis investigates the performance of TPSR affected by IRI and proposes several schemes to improve relaying reliability, throughput and secrecy. Simulations revealed that the existing TPSR could perform worse than the conventional Half Duplex Relaying (HDR) scheme. Opportunistic TPSR schemes are proposed to improve the capacity performance. Several relay pair selection criteria are developed to ensure the selection of the best performing relay pair. Adaptive schemes which dynamically switch between TPSR and conventional HDR are proposed to further improve the performance. Simulation and analytical results show that the proposed schemes can achieve up to 45% ergodic capacity improvement and lower outage probability compared to baseline schemes, while achieving the maximum diversity and multiplexing tradeoff of the multi-input single-output channel. In addition, this thesis proposes secrecy TPSR schemes to protect secrecy of wireless transmission from eavesdropper. The use of two relays in the proposed schemes deliver more robust secrecy transmission while the use of scheduled jamming signals improves secrecy rate. Simulation and analytical results reveal that the proposed schemes can achieve up to 62% ergodic secrecy capacity improvement and quadratically lower intercept and secrecy outage probabilities if compared to existing schemes. Overall, this thesis demonstrates that the proposed TPSR schemes are able to deliver performance improvement in terms of throughput, reliability and secrecy in the presence of IRI

    Low Complexity Adaptive Transmission Scheme for Cooperative Networks with Decode-and-Forward Relay

    No full text
    In this paper, we consider adaptive quadratic amplitude modulation (QAM) for a cooperative network consists of a source, one decode-and-forward (DF) relay and a destination which are single antenna systems. For increasing the spectral efficiency of the system, we use adaptive modulation method for data transmission. We propose a new adaptive modulation scheme which has less complexity than available schemes. Then, we analyze average spectral efficiency (ASE), average bit error performance (ABEP) and outage probability of the proposed scheme. Computer simulation results corroborate our theoretical relations; furthermore, it shows that our proposed scheme has the same performance as maximum spectral efficiency scheme (MSES) with much lower complexity and has better performance than some other schemes

    A Study Of Cooperative Spectrum Sharing Schemes For Internet Of Things Systems

    Get PDF
    The Internet of Things (IoT) has gained much attention in recent years with the massive increase in the number of connected devices. Cognitive Machine-to-Machine (CM2M) communications is a hot research topic in which a cognitive dimension allows M2M networks to overcome the challenges of spectrum scarcity, interference, and green requirements. In this paper, we propose a Generalized Cooperative Spectrum Sharing (GCSS) scheme for M2M communication. Cooperation extends the coverage of wireless networks as well as increasing their throughput while reducing the energy consumption of the connected low power devices. We study the outage performance of the proposed GCSS scheme for M2M system and derive exact expressions for the outage probability. We also analyze the effect of varying transmission powers on the performance of the system

    Cooperative Communications: Network Design and Incremental Relaying

    Get PDF

    Performance Analysis of Adaptive Modulation for Distributed Switch-and-Stay Combining with Single Relay

    Get PDF
    In this paper we present our investigation of the performance of a distributed switch-and-stay scheme and a solution for low-complexity cooperative relaying under adaptive transmission. We are able to derive the closed-form expressions of the occurrence probability, the outage probability, the bit error probability, and the achievable spectral efficiency of the proposed scheme for Rayleigh fading channels. Simulations are performed to verify the analytic results. It is shown that, by applying adaptive modulation, the achievable spectral efficiency of the system is improved significantly, and the proposed scheme achieves the same spectral efficiency as compared to that of the incremental relaying but with a lower relay activation time
    corecore