81 research outputs found

    Relaying Techniques for Multi Hop Differential Transmitted Reference IR-UWB Systems

    Get PDF
    This thesis develops novel relaying techniques to overcome the limited coverage of Impulse Radio Ultra Wideband (IR-UWB) systems based on Differential Transmitted Reference (DTR). Firstly, we describe a cooperative approach for two hop Amplify-and-Forward (A&F) relaying that exploits both the signal forwarded by the relay and the one directly transmitted by the source. After deriving the log-likelihood ratio based decision rule, we propose a semi-analytical power allocation strategy by evaluating a closed form expression for the effective Signal to Noise Ratio (SNR) at the destination, which is maximized by exhaustive search. Successively, we present a Joint Power Allocation and Path Selection (JPAPS) method for multi hop Decode-and-Forward (D&F) relaying. Starting from the heuristic consideration that the overall Bit Error Rate (BER) of the system is essentially driven by the quality of the path with the best performance, the proposed technique associates to each possible route a metric given by an approximation of the minimum BER which can be achieved as the power allocation coefficients vary and then takes into account only the path minimizing that metric. Specifically, we employ an equal SNR power allocation strategy that yields a closed form expression for the power allocation coefficients and we describe a path selection algorithm with polynomial complexity. Simulation results show the remarkable SNR gains obtained by the proposed schemes with respect to direct transmission and existing relaying techniques. Lo scopo di questa tesi è elaborare nuove tecniche di relaying per risolvere il problema della copertura limitata in sistemi radio ad impulsi a banda ultra larga (Impulse-Radio Ultra-Wideband, IR-UWB) basati su Differential Transmitted Reference (DTR). Innanzi tutto, si descrive un approccio cooperativo per singolo relay Amplify-and-Forward (A&F) che sfrutta sia il segnale inoltrato dal relay sia quello trasmesso direttamente dalla sorgente. Dopo aver introdotto una regola di decisione basata sul logaritmo del rapporto di verosimiglianza, si propone una strategia di allocazione di potenza semi-analitica valutando un'espressione in forma chiusa per il rapporto segnale rumore (SNR) effettivo al nodo destinazione, che viene massimizzato per mezzo di una ricerca esaustiva. Successivamente, si presenta un metodo congiunto di allocazione di potenza e scelta del cammino ottimo (Joint Power Allocation and Path Selection, JPAPS) per relay Decode-and-Forward (D&F) multipli. Partendo dalla considerazione euristica che la probabilità d'errore complessiva del sistema dipende essenzialmente dalla qualità del cammino migliore, la tecnica proposta associa ad ogni possibile percorso una metrica data da un'approssimazione della minima probabilità d'errore ottenibile al variare dei coefficienti di allocazione di potenza e poi prende in considerazione soltanto il cammino che minimizza tale metrica. Specificatamente, si adopera una strategia di allocazione di potenza in cui si impone l'uguaglianza degli SNR dei singoli link (equal SNR power allocation strategy), ottenendo un'espressione in forma chiusa per i coefficienti di allocazione di potenza. Inoltre, si descrive un algoritmo di scelta del cammino ottimo con complessità polinomiale. I risultati delle simulazioni mostrano i notevoli guadagni in termini di SNR ottenuti dagli schemi proposti rispetto alla trasmissione diretta e alle altre tecniche di relaying esistenti

    Code-Multiplexing-Based One-Way Detect-and-Forward Relaying Schemes for Multiuser UWB MIMO Systems

    Get PDF
    In this paper, we consider decode-and-forward (DF) one-way relaying schemes for multiuser impulse-radio ultrawideband (UWB) communications. We assume low-complexity terminals with limited processing capabilities and a central transceiver unit (i.e., the relay) with a higher computational capacity. All nodes have a single antenna differently from the relay in which multiple antennas may be installed. In order to keep the complexity as low as possible, we concentrate on noncoherent transceiver architectures based on multiuser code-multiplexing transmitted-reference schemes. We propose various relaying systems with different computational complexity and different levels of required channel knowledge. The proposed schemes largely outperform systems without relay in terms of both bit error rate (BER) performance and coverage

    Ultra Wideband

    Get PDF
    Ultra wideband (UWB) has advanced and merged as a technology, and many more people are aware of the potential for this exciting technology. The current UWB field is changing rapidly with new techniques and ideas where several issues are involved in developing the systems. Among UWB system design, the UWB RF transceiver and UWB antenna are the key components. Recently, a considerable amount of researches has been devoted to the development of the UWB RF transceiver and antenna for its enabling high data transmission rates and low power consumption. Our book attempts to present current and emerging trends in-research and development of UWB systems as well as future expectations

    OFDM Communication with Cooperative Relays

    Get PDF
    Signal fading due to multi-path propagation is one of the major impairments to meet the demands of next generation wireless networks for high data rate services. To mitigate the fading effects, time, frequency, and spatial diversity techniques or their hybrid can be used. Among different types of diversity techniques, spatial diversity is of special interest as is does not incur system losses in terms of delay and bandwidth efficiency.TelecommunicationsElectrical Engineering, Mathematics and Computer Scienc

    Radio Communications

    Get PDF
    In the last decades the restless evolution of information and communication technologies (ICT) brought to a deep transformation of our habits. The growth of the Internet and the advances in hardware and software implementations modied our way to communicate and to share information. In this book, an overview of the major issues faced today by researchers in the eld of radio communications is given through 35 high quality chapters written by specialists working in universities and research centers all over the world. Various aspects will be deeply discussed: channel modeling, beamforming, multiple antennas, cooperative networks, opportunistic scheduling, advanced admission control, handover management, systems performance assessment, routing issues in mobility conditions, localization, web security. Advanced techniques for the radio resource management will be discussed both in single and multiple radio technologies; either in infrastructure, mesh or ad hoc networks

    Design of large polyphase filters in the Quadratic Residue Number System

    Full text link

    Cooperative Radio Communications for Green Smart Environments

    Get PDF
    The demand for mobile connectivity is continuously increasing, and by 2020 Mobile and Wireless Communications will serve not only very dense populations of mobile phones and nomadic computers, but also the expected multiplicity of devices and sensors located in machines, vehicles, health systems and city infrastructures. Future Mobile Networks are then faced with many new scenarios and use cases, which will load the networks with different data traffic patterns, in new or shared spectrum bands, creating new specific requirements. This book addresses both the techniques to model, analyse and optimise the radio links and transmission systems in such scenarios, together with the most advanced radio access, resource management and mobile networking technologies. This text summarises the work performed by more than 500 researchers from more than 120 institutions in Europe, America and Asia, from both academia and industries, within the framework of the COST IC1004 Action on "Cooperative Radio Communications for Green and Smart Environments". The book will have appeal to graduates and researchers in the Radio Communications area, and also to engineers working in the Wireless industry. Topics discussed in this book include: • Radio waves propagation phenomena in diverse urban, indoor, vehicular and body environments• Measurements, characterization, and modelling of radio channels beyond 4G networks• Key issues in Vehicle (V2X) communication• Wireless Body Area Networks, including specific Radio Channel Models for WBANs• Energy efficiency and resource management enhancements in Radio Access Networks• Definitions and models for the virtualised and cloud RAN architectures• Advances on feasible indoor localization and tracking techniques• Recent findings and innovations in antenna systems for communications• Physical Layer Network Coding for next generation wireless systems• Methods and techniques for MIMO Over the Air (OTA) testin

    Temperature aware power optimization for multicore floating-point units

    Full text link

    Antennas and Propagation Aspects for Emerging Wireless Communication Technologies

    Get PDF
    The increasing demand for high data rate applications and the delivery of zero-latency multimedia content drives technological evolutions towards the design and implementation of next-generation broadband wireless networks. In this context, various novel technologies have been introduced, such as millimeter wave (mmWave) transmission, massive multiple input multiple output (MIMO) systems, and non-orthogonal multiple access (NOMA) schemes in order to support the vision of fifth generation (5G) wireless cellular networks. The introduction of these technologies, however, is inextricably connected with a holistic redesign of the current transceiver structures, as well as the network architecture reconfiguration. To this end, ultra-dense network deployment along with distributed massive MIMO technologies and intermediate relay nodes have been proposed, among others, in order to ensure an improved quality of services to all mobile users. In the same framework, the design and evaluation of novel antenna configurations able to support wideband applications is of utmost importance for 5G context support. Furthermore, in order to design reliable 5G systems, the channel characterization in these frequencies and in the complex propagation environments cannot be ignored because it plays a significant role. In this Special Issue, fourteen papers are published, covering various aspects of novel antenna designs for broadband applications, propagation models at mmWave bands, the deployment of NOMA techniques, radio network planning for 5G networks, and multi-beam antenna technologies for 5G wireless communications
    • …
    corecore