3,147 research outputs found

    An efficient genetic algorithm for large-scale transmit power control of dense and robust wireless networks in harsh industrial environments

    Get PDF
    The industrial wireless local area network (IWLAN) is increasingly dense, due to not only the penetration of wireless applications to shop floors and warehouses, but also the rising need of redundancy for robust wireless coverage. Instead of simply powering on all access points (APs), there is an unavoidable need to dynamically control the transmit power of APs on a large scale, in order to minimize interference and adapt the coverage to the latest shadowing effects of dominant obstacles in an industrial indoor environment. To fulfill this need, this paper formulates a transmit power control (TPC) model that enables both powering on/off APs and transmit power calibration of each AP that is powered on. This TPC model uses an empirical one-slope path loss model considering three-dimensional obstacle shadowing effects, to enable accurate yet simple coverage prediction. An efficient genetic algorithm (GA), named GATPC, is designed to solve this TPC model even on a large scale. To this end, it leverages repair mechanism-based population initialization, crossover and mutation, parallelism as well as dedicated speedup measures. The GATPC was experimentally validated in a small-scale IWLAN that is deployed a real industrial indoor environment. It was further numerically demonstrated and benchmarked on both small- and large-scales, regarding the effectiveness and the scalability of TPC. Moreover, sensitivity analysis was performed to reveal the produced interference and the qualification rate of GATPC in function of varying target coverage percentage as well as number and placement direction of dominant obstacles. (C) 2018 Elsevier B.V. All rights reserved

    An efficient genetic algorithm for large-scale planning of robust industrial wireless networks

    Get PDF
    An industrial indoor environment is harsh for wireless communications compared to an office environment, because the prevalent metal easily causes shadowing effects and affects the availability of an industrial wireless local area network (IWLAN). On the one hand, it is costly, time-consuming, and ineffective to perform trial-and-error manual deployment of wireless nodes. On the other hand, the existing wireless planning tools only focus on office environments such that it is hard to plan IWLANs due to the larger problem size and the deployed IWLANs are vulnerable to prevalent shadowing effects in harsh industrial indoor environments. To fill this gap, this paper proposes an overdimensioning model and a genetic algorithm based over-dimensioning (GAOD) algorithm for deploying large-scale robust IWLANs. As a progress beyond the state-of-the-art wireless planning, two full coverage layers are created. The second coverage layer serves as redundancy in case of shadowing. Meanwhile, the deployment cost is reduced by minimizing the number of access points (APs); the hard constraint of minimal inter-AP spatial paration avoids multiple APs covering the same area to be simultaneously shadowed by the same obstacle. The computation time and occupied memory are dedicatedly considered in the design of GAOD for large-scale optimization. A greedy heuristic based over-dimensioning (GHOD) algorithm and a random OD algorithm are taken as benchmarks. In two vehicle manufacturers with a small and large indoor environment, GAOD outperformed GHOD with up to 20% less APs, while GHOD outputted up to 25% less APs than a random OD algorithm. Furthermore, the effectiveness of this model and GAOD was experimentally validated with a real deployment system

    Reliable cost-optimal deployment of wireless sensor networks

    Get PDF
    Wireless Sensor Networks (WSNs) technology is currently considered one of the key technologies for realizing the Internet of Things (IoT). Many of the important WSNs applications are critical in nature such that the failure of the WSN to carry out its required tasks can have serious detrimental effects. Consequently, guaranteeing that the WSN functions satisfactorily during its intended mission time, i.e. the WSN is reliable, is one of the fundamental requirements of the network deployment strategy. Achieving this requirement at a minimum deployment cost is particularly important for critical applications in which deployed SNs are equipped with expensive hardware. However, WSN reliability, defined in the traditional sense, especially in conjunction with minimizing the deployment cost, has not been considered as a deployment requirement in existing WSN deployment algorithms to the best of our knowledge. Addressing this major limitation is the central focus of this dissertation. We define the reliable cost-optimal WSN deployment as the one that has minimum deployment cost with a reliability level that meets or exceeds a minimum level specified by the targeted application. We coin the problem of finding such deployments, for a given set of application-specific parameters, the Minimum-Cost Reliability-Constrained Sensor Node Deployment Problem (MCRC-SDP). To accomplish the aim of the dissertation, we propose a novel WSN reliability metric which adopts a more accurate SN model than the model used in the existing metrics. The proposed reliability metric is used to formulate the MCRC-SDP as a constrained combinatorial optimization problem which we prove to be NP-Complete. Two heuristic WSN deployment optimization algorithms are then developed to find high quality solutions for the MCRC-SDP. Finally, we investigate the practical realization of the techniques that we developed as solutions of the MCRC-SDP. For this purpose, we discuss why existing WSN Topology Control Protocols (TCPs) are not suitable for managing such reliable cost-optimal deployments. Accordingly, we propose a practical TCP that is suitable for managing the sleep/active cycles of the redundant SNs in such deployments. Experimental results suggest that the proposed TCP\u27s overhead and network Time To Repair (TTR) are relatively low which demonstrates the applicability of our proposed deployment solution in practice

    Resource Optimization in Wireless Sensor Networks for an Improved Field Coverage and Cooperative Target Tracking

    Get PDF
    There are various challenges that face a wireless sensor network (WSN) that mainly originate from the limited resources a sensor node usually has. A sensor node often relies on a battery as a power supply which, due to its limited capacity, tends to shorten the life-time of the node and the network as a whole. Other challenges arise from the limited capabilities of the sensors/actuators a node is equipped with, leading to complication like a poor coverage of the event, or limited mobility in the environment. This dissertation deals with the coverage problem as well as the limited power and capabilities of a sensor node. In some environments, a controlled deployment of the WSN may not be attainable. In such case, the only viable option would be a random deployment over the region of interest (ROI), leading to a great deal of uncovered areas as well as many cutoff nodes. Three different scenarios are presented, each addressing the coverage problem for a distinct purpose. First, a multi-objective optimization is considered with the purpose of relocating the sensor nodes after the initial random deployment, through maximizing the field coverage while minimizing the cost of mobility. Simulations reveal the improvements in coverage, while maintaining the mobility cost to a minimum. In the second scenario, tracking a mobile target with a high level of accuracy is of interest. The relocation process was based on learning the spatial mobility trends of the targets. Results show the improvement in tracking accuracy in terms of mean square position error. The last scenario involves the use of inverse reinforcement learning (IRL) to predict the destination of a given target. This lay the ground for future exploration of the relocation problem to achieve improved prediction accuracy. Experiments investigated the interaction between prediction accuracy and terrain severity. The other WSN limitation is dealt with by introducing the concept of sparse sensing to schedule the measurements of sensor nodes. A hybrid WSN setup of low and high precision nodes is examined. Simulations showed that the greedy algorithm used for scheduling the nodes, realized a network that is more resilient to individual node failure. Moreover, the use of more affordable nodes stroke a better trade-off between deployment feasibility and precision

    Design and Performance Analysis of Genetic Algorithms for Topology Control Problems

    Full text link
    In this dissertation, we present a bio-inspired decentralized topology control mechanism, called force-based genetic algorithm (FGA), where a genetic algorithm (GA) is run by each autonomous mobile node to achieve a uniform spread of mobile nodes and to provide a fully connected network over an unknown area. We present a formal analysis of FGA in terms of convergence speed, uniformity at area coverage, and Lyapunov stability theorem. This dissertation emphasizes the use of mobile nodes to achieve a uniform distribution over an unknown terrain without a priori information and a central control unit. In contrast, each mobile node running our FGA has to make its own movement direction and speed decisions based on local neighborhood information, such as obstacles and the number of neighbors, without a centralized control unit or global knowledge. We have implemented simulation software in Java and developed four different testbeds to study the effectiveness of different GA-based topology control frameworks for network performance metrics including node density, speed, and the number of generations that GAs run. The stochastic behavior of FGA, like all GA-based approaches, makes it difficult to analyze its convergence speed. We built metrically transitive homogeneous and inhomogeneous Markov chain models to analyze the convergence of our FGA with respect to the communication ranges of mobile nodes and the total number of nodes in the system. The Dobrushin contraction coefficient of ergodicity is used for measuring convergence speed for homogeneous and inhomogeneous Markov chain models of our FGA. Furthermore, convergence characteristic analysis helps us to choose the nearoptimal values for communication range, the number of mobile nodes, and the mean node degree before sending autonomous mobile nodes to any mission. Our analytical and experimental results show that our FGA delivers promising results for uniform mobile node distribution over unknown terrains. Since our FGA adapts to local environment rapidly and does not require global network knowledge, it can be used as a real-time topology controller for commercial and military applications

    Innovative Wireless Localization Techniques and Applications

    Get PDF
    Innovative methodologies for the wireless localization of users and related applications are addressed in this thesis. In last years, the widespread diffusion of pervasive wireless communication (e.g., Wi-Fi) and global localization services (e.g., GPS) has boosted the interest and the research on location information and services. Location-aware applications are becoming fundamental to a growing number of consumers (e.g., navigation, advertising, seamless user interaction with smart places), private and public institutions in the fields of energy efficiency, security, safety, fleet management, emergency response. In this context, the position of the user - where is often more valuable for deploying services of interest than the identity of the user itself - who. In detail, opportunistic approaches based on the analysis of electromagnetic field indicators (i.e., received signal strength and channel state information) for the presence detection, the localization, the tracking and the posture recognition of cooperative and non-cooperative (device-free) users in indoor environments are proposed and validated in real world test sites. The methodologies are designed to exploit existing wireless infrastructures and commodity devices without any hardware modification. In outdoor environments, global positioning technologies are already available in commodity devices and vehicles, the research and knowledge transfer activities are actually focused on the design and validation of algorithms and systems devoted to support decision makers and operators for increasing efficiency, operations security, and management of large fleets as well as localized sensed information in order to gain situation awareness. In this field, a decision support system for emergency response and Civil Defense assets management (i.e., personnel and vehicles equipped with TETRA mobile radio) is described in terms of architecture and results of two-years of experimental validation

    Planning UAV Activities for Efficient User Coverage in Disaster Areas

    Get PDF
    Climate changes brought about by global warming as well as man-made environmental changes are often the cause of sever natural disasters. ICT, which is itself responsible for global warming due to its high carbon footprint, can play a role in alleviating the consequences of such hazards by providing reliable, resilient means of communication during a disaster crisis. In this paper, we explore the provision of wireless coverage through UAVs (Unmanned Aerial Vehicles) to complement, or replace, the traditional communication infrastructure. The use of UAVs is indeed crucial in emergency scenarios, as they allow for the quick and easy deployment of micro and pico cellular base stations where needed. We characterize the movements of UAVs and define an optimization problem to determine the best UAV coverage that maximizes the user throughput, while maintaining fairness across the different parts of the geographical area that has been affected by the disaster. To evaluate our strategy, we simulate a flooding in San Francisco and the car traffic resulting from people seeking safety on higher ground

    Development of a GIS-based method for sensor network deployment and coverage optimization

    Get PDF
    Au cours des dernières années, les réseaux de capteurs ont été de plus en plus utilisés dans différents contextes d’application allant de la surveillance de l’environnement au suivi des objets en mouvement, au développement des villes intelligentes et aux systèmes de transport intelligent, etc. Un réseau de capteurs est généralement constitué de nombreux dispositifs sans fil déployés dans une région d'intérêt. Une question fondamentale dans un réseau de capteurs est l'optimisation de sa couverture spatiale. La complexité de l'environnement de détection avec la présence de divers obstacles empêche la couverture optimale de plusieurs zones. Par conséquent, la position du capteur affecte la façon dont une région est couverte ainsi que le coût de construction du réseau. Pour un déploiement efficace d'un réseau de capteurs, plusieurs algorithmes d'optimisation ont été développés et appliqués au cours des dernières années. La plupart de ces algorithmes reposent souvent sur des modèles de capteurs et de réseaux simplifiés. En outre, ils ne considèrent pas certaines informations spatiales de l'environnement comme les modèles numériques de terrain, les infrastructures construites humaines et la présence de divers obstacles dans le processus d'optimisation. L'objectif global de cette thèse est d'améliorer les processus de déploiement des capteurs en intégrant des informations et des connaissances géospatiales dans les algorithmes d'optimisation. Pour ce faire, trois objectifs spécifiques sont définis. Tout d'abord, un cadre conceptuel est développé pour l'intégration de l'information contextuelle dans les processus de déploiement des réseaux de capteurs. Ensuite, sur la base du cadre proposé, un algorithme d'optimisation sensible au contexte local est développé. L'approche élargie est un algorithme local générique pour le déploiement du capteur qui a la capacité de prendre en considération de l'information spatiale, temporelle et thématique dans différents contextes d'applications. Ensuite, l'analyse de l'évaluation de la précision et de la propagation d'erreurs est effectuée afin de déterminer l'impact de l'exactitude des informations contextuelles sur la méthode d'optimisation du réseau de capteurs proposée. Dans cette thèse, l'information contextuelle a été intégrée aux méthodes d'optimisation locales pour le déploiement de réseaux de capteurs. L'algorithme développé est basé sur le diagramme de Voronoï pour la modélisation et la représentation de la structure géométrique des réseaux de capteurs. Dans l'approche proposée, les capteurs change leur emplacement en fonction des informations contextuelles locales (l'environnement physique, les informations de réseau et les caractéristiques des capteurs) visant à améliorer la couverture du réseau. La méthode proposée est implémentée dans MATLAB et est testée avec plusieurs jeux de données obtenus à partir des bases de données spatiales de la ville de Québec. Les résultats obtenus à partir de différentes études de cas montrent l'efficacité de notre approche.In recent years, sensor networks have been increasingly used for different applications ranging from environmental monitoring, tracking of moving objects, development of smart cities and smart transportation system, etc. A sensor network usually consists of numerous wireless devices deployed in a region of interest. A fundamental issue in a sensor network is the optimization of its spatial coverage. The complexity of the sensing environment with the presence of diverse obstacles results in several uncovered areas. Consequently, sensor placement affects how well a region is covered by sensors as well as the cost for constructing the network. For efficient deployment of a sensor network, several optimization algorithms are developed and applied in recent years. Most of these algorithms often rely on oversimplified sensor and network models. In addition, they do not consider spatial environmental information such as terrain models, human built infrastructures, and the presence of diverse obstacles in the optimization process. The global objective of this thesis is to improve sensor deployment processes by integrating geospatial information and knowledge in optimization algorithms. To achieve this objective three specific objectives are defined. First, a conceptual framework is developed for the integration of contextual information in sensor network deployment processes. Then, a local context-aware optimization algorithm is developed based on the proposed framework. The extended approach is a generic local algorithm for sensor deployment, which accepts spatial, temporal, and thematic contextual information in different situations. Next, an accuracy assessment and error propagation analysis is conducted to determine the impact of the accuracy of contextual information on the proposed sensor network optimization method. In this thesis, the contextual information has been integrated in to the local optimization methods for sensor network deployment. The extended algorithm is developed based on point Voronoi diagram in order to represent geometrical structure of sensor networks. In the proposed approach sensors change their location based on local contextual information (physical environment, network information and sensor characteristics) aiming to enhance the network coverage. The proposed method is implemented in MATLAB and tested with several data sets obtained from Quebec City spatial database. Obtained results from different case studies show the effectiveness of our approach

    Movement-Efficient Sensor Deployment in Wireless Sensor Networks With Limited Communication Range.

    Get PDF
    We study a mobile wireless sensor network (MWSN) consisting of multiple mobile sensors or robots. Three key factors in MWSNs, sensing quality, energy consumption, and connectivity, have attracted plenty of attention, but the interaction of these factors is not well studied. To take all the three factors into consideration, we model the sensor deployment problem as a constrained source coding problem. %, which can be applied to different coverage tasks, such as area coverage, target coverage, and barrier coverage. Our goal is to find an optimal sensor deployment (or relocation) to optimize the sensing quality with a limited communication range and a specific network lifetime constraint. We derive necessary conditions for the optimal sensor deployment in both homogeneous and heterogeneous MWSNs. According to our derivation, some sensors are idle in the optimal deployment of heterogeneous MWSNs. Using these necessary conditions, we design both centralized and distributed algorithms to provide a flexible and explicit trade-off between sensing uncertainty and network lifetime. The proposed algorithms are successfully extended to more applications, such as area coverage and target coverage, via properly selected density functions. Simulation results show that our algorithms outperform the existing relocation algorithms
    • …
    corecore