373 research outputs found

    Rooftop and indoor reception with transmit diversity applied to DVB-T networks: A long term measurement campaign

    Get PDF
    Although transmit Delay Diversity (DD) can provide a gain in indoor and other Non Line of Sight situations (NLOS), it can introduce degradation in rooftop reception. In fact, when the Ricean K factor of the channel is significantly high (e.g. Line of Sight reception), the channel performs similar to an AWGN channel where the performance degrades due to DD that artificially increase the fading. This paper investigates through practical evaluation the impacts of Transmit DD on LOS and NLOS stationary reception. Then, it studies 2 techniques to reduce the degradation performance in LOS while aiming to keep the same diversity gain in NLOS receptio

    A Survey of Air-to-Ground Propagation Channel Modeling for Unmanned Aerial Vehicles

    Full text link
    In recent years, there has been a dramatic increase in the use of unmanned aerial vehicles (UAVs), particularly for small UAVs, due to their affordable prices, ease of availability, and ease of operability. Existing and future applications of UAVs include remote surveillance and monitoring, relief operations, package delivery, and communication backhaul infrastructure. Additionally, UAVs are envisioned as an important component of 5G wireless technology and beyond. The unique application scenarios for UAVs necessitate accurate air-to-ground (AG) propagation channel models for designing and evaluating UAV communication links for control/non-payload as well as payload data transmissions. These AG propagation models have not been investigated in detail when compared to terrestrial propagation models. In this paper, a comprehensive survey is provided on available AG channel measurement campaigns, large and small scale fading channel models, their limitations, and future research directions for UAV communication scenarios

    Erasure Insertion in RS-Coded SFH MFSK Subjected to Tone Jamming and Rayleigh Fading

    No full text
    The achievable performance of Reed Solomon (RS) coded slow frequency hopping (SFH) assisted M-ary frequency shift keying (MFSK) using various erasure insertion (EI) schemes is investigated, when communicating over uncorrelated Rayleigh fading channels in the presence of multitone jamming. Three different EI schemes are considered, which are based on the output threshold test (OTT), on the ratio threshold test (RTT) and on the joint maximum output-ratio threshold test (MORTT). The relevant statistics of these EI schemes are investigated mathematically and based on these statistics, their performance is evaluated in the context of error-and-erasure RS decoding. It is demonstrated that the system performance can be significantly improved by using error-and-erasure decoding invoking the EI schemes considered. Index Terms—Tone jamming, OTT, RTT, MO-RTT, SFH, error-and-erasure decoding (EED)

    An Accurate Approximation to the Distribution of the Sum of Equally Correlated Nakagami-m Envelopes and its Application in Equal Gain Diversity Receivers

    Full text link
    We present a novel and accurate approximation for the distribution of the sum of equally correlated Nakagami-m variates. Ascertaining on this result we study the performance of Equal Gain Combining (EGC) receivers, operating over equally correlating fading channels. Numerical results and simulations show the accuracy of the proposed approximation and the validity of the mathematical analysis

    Maximum likelihood receivers for space-time coded MIMO systems with gaussian estimation errors

    Get PDF
    Maximum likelihood (ML) receivers for space-time coded multiple-input multiple-output (MIMO) systems with Gaussian channel estimation errors are proposed. Two different cases are considered. In the first case, the conditional probability density function (PDF) of the channel estimate is assumed Gaussian and known. In the second case, the joint PDF of the channel estimate and the true channel gain is assumed Gaussian and known. In addition to ML signal detection for space-time coded MIMO with ML and minimum mean-squared-error channel estimation, ML signal detection without channel estimation is also studied. Two suboptimal structures are derived. The Alamouti space-time codes are used to examine the performances of the new receivers. Simulation results show that the new receivers can reduce the gap between the conventional receiver with channel estimation errors and the receiver with perfect channel knowledge at least by half in some cases
    corecore