4,399 research outputs found

    Initial synchronisation of wideband and UWB direct sequence systems: single- and multiple-antenna aided solutions

    No full text
    This survey guides the reader through the open literature on the principle of initial synchronisation in single-antenna-assisted single- and multi-carrier Code Division Multiple Access (CDMA) as well as Direct Sequence-Ultra WideBand (DS-UWB) systems, with special emphasis on the DownLink (DL). There is a paucity of up-to-date surveys and review articles on initial synchronization solutions for MIMO-aided and cooperative systems - even though there is a plethora of papers on both MIMOs and on cooperative systems, which assume perfect synchronization. Hence this paper aims to ?ll the related gap in the literature

    Differential Coherent Code Acquisition in the Multiple Transmit/Receive Antenna Aided DS-CDMA Downlink

    No full text
    In this contribution we investigate both differentially coherent and noncoherent code acquisition schemes in the multiple transmit/receive antenna aided DS-CDMA downlink, when communicating over uncorrelated Rayleigh channels. It is demonstrated that in contrast to our expectations, the achievable Mean Acquisition Time (MAT) degrades at low Ec/Io values, as the number of transmit antennas is increased in both differentially coherent and noncoherent code acquisition system scenarios, even though the degree of performance degradation depends upon the specific scheme considered. Ironically, our findings suggest that increasing the number of transmit antennas in a MIMO-aided CDMA system results in combining the low-energy, noise-contaminated signals of the transmit antennas, which ultimately increases the MAT by an order of magnitude, when the SINR is relatively low. Therefore our future research will be aimed at specifically designing acquisition schemes for MIMO systems

    Modelling and Experimental Assessment of Inter-Personal Distancing Based on Shared GNSS Observables

    Get PDF
    In the last few years, all countries worldwide have fought the spread of SARS-CoV-2 (COVID-19) by exploiting Information and Communication Technologies (ICT) to perform contact tracing. In parallel, the pandemic has highlighted the relevance of mobility and social distancing among citizens. The monitoring of such aspects appeared prominent for reactive decision-making and the effective tracking of the infection chain. In parallel to the proximity sensing among people, indeed, the concept of social distancing has captured the attention to signal processing algorithms enabling short-to-medium range distance estimation to provide behavioral models in the emergency. By exploiting the availability of smart devices, the synergy between mobile network connectivity and Global Navigation Satellite Systems (GNSS), cooperative ranging approaches allow computing inter-personal distance measurements in outdoor environments through the exchange of light-weight navigation data among interconnected users. In this paper, a model for Inter-Agent Ranging (IAR) is provided and experimentally assessed to offer a naive collaborative distancing technique that leverages these features. Although the technique provides distance information, it does not imply the disclosure of the user’s locations being intrinsically prone to protect sensitive user data. A statistical error model is presented and validated through synthetic simulations and real, on-field experiments to support implementation in GNSS-equipped mobile devices. Accuracy and precision of IAR measurements are compared to other consolidated GNSS-based techniques showing comparable performance at lower complexity and computational effort

    Advanced space system concepts and their orbital support needs (1980 - 2000). Volume 2: Final report

    Get PDF
    The results are presented of a study which identifies over 100 new and highly capable space systems for the 1980-2000 time period: civilian systems which could bring benefits to large numbers of average citizens in everyday life, much enhance the kinds and levels of public services, increase the economic motivation for industrial investment in space, expand scientific horizons; and, in the military area, systems which could materially alter current concepts of tactical and strategic engagements. The requirements for space transportation, orbital support, and technology for these systems are derived, and those requirements likely to be shared between NASA and the DoD in the time period identified. The high leverage technologies for the time period are identified as very large microwave antennas and optics, high energy power subsystems, high precision and high power lasers, microelectronic circuit complexes and data processors, mosaic solid state sensing devices, and long-life cryogenic refrigerators

    Numerical solution of 3-D electromagnetic problems in exploration geophysics and its implementation on massively parallel computers

    Get PDF
    The growing significance, technical development and employment of electromagnetic (EM) methods in exploration geophysics have led to the increasing need for reliable and fast techniques of interpretation of 3-D EM data sets acquired in complex geological environments. The first and most important step to creating an inversion method is the development of a solver for the forward problem. In order to create an efficient, reliable and practical 3-D EM inversion, it is necessary to have a 3-D EM modelling code that is highly accurate, robust and very fast. This thesis focuses precisely on this crucial and very demanding step to building a 3-D EM interpretation method. The thesis presents as its main contribution a highly accurate, robust, very fast and extremely scalable numerical method for 3-D EM modelling in geophysics that is based on finite elements (FE) and designed to run on massively parallel computing platforms. Thanks to the fact that the FE approach supports completely unstructured tetrahedral meshes as well as local mesh refinements, the presented solver is able to represent complex geometries of subsurface structures very precisely and thus improve the solution accuracy and avoid misleading artefacts in images. Consequently, it can be successfully used in geological environments of arbitrary geometrical complexities. The parallel implementation of the method, which is based on the domain decomposition and a hybrid MPI-OpenMP scheme, has proved to be highly scalable - the achieved speed-up is close to the linear for more than a thousand processors. Thanks to this, the code is able to deal with extremely large problems, which may have hundreds of millions of degrees of freedom, in a very efficient way. The importance of having this forward-problem solver lies in the fact that it is now possible to create a 3-D EM inversion that can deal with data obtained in extremely complex geological environments in a way that is realistic for practical use in industry. So far, such imaging tool has not been proposed due to a lack of efficient, parallel FE solutions as well as the limitations of efficient solvers based on finite differences. In addition, the thesis discusses physical, mathematical and numerical aspects and challenges of 3-D EM modelling, which have been studied during my research in order to properly design the presented software for EM field simulations on 3-D areas of the Earth. Through this work, a physical problem formulation based on the secondary Coulomb-gauged EM potentials has been validated, proving that it can be successfully used with the standard nodal FE method to give highly accurate numerical solutions. Also, this work has shown that Krylov subspace iterative methods are the best solution for solving linear systems that arise after FE discretisation of the problem under consideration. More precisely, it has been discovered empirically that the best iterative method for this kind of problems is biconjugate gradient stabilised with an elaborate preconditioner. Since most commonly used preconditioners proved to be either unable to improve the convergence of the implemented solvers to the desired extent, or impractical in the parallel context, I have proposed a preconditioning technique for Krylov methods that is based on algebraic multigrid. Tests for various problems with different conductivity structures and characteristics have shown that the new preconditioner greatly improves the convergence of different Krylov subspace methods, which significantly reduces the total execution time of the program and improves the solution quality. Furthermore, the preconditioner is very practical for parallel implementation. Finally, it has been concluded that there are not any restrictions in employing classical parallel programming models, MPI and OpenMP, for parallelisation of the presented FE solver. Moreover, they have proved to be enough to provide an excellent scalability for it

    Comparing Approaches to Virtual Team Onboarding: the Influence of Synchrony and Cues on Impressions of Leaders During Encounter Phase Organizational Socialization

    Get PDF
    Whether fully virtual or a hybrid of virtual and face-to-face teams, more organizations use computer-mediated communication than ever before. Under the right circumstances, virtual team environments have been shown to increase employee satisfaction, retention, and productivity (Gallup, 2020). However, there is also consensus that virtual teams take longer to get work done and miscommunicate more frequently than face-to-face teams (Morrison-Smith & Ruiz, 2020). While there is no silver bullet to resolve these shortcomings, one potential area for intervention is during new employee onboarding. This study tests the hyperpersonal model and social presence theory’s application to virtual team onboarding by examining how message characteristics (synchronicity and degree of nonverbal cues) affect new employees’ sense of safety and impressions of their managers during their first moments on the job. The study finds no relationship between synchronicity and degree of nonverbal cues on employees’ sense of safety or impression of their managers. However, the study finds a marginally significant negative interaction effect between synchronicity and low nonverbal cues on impressions of virtual team leaders’ relational communication. Theoretical and practical implications for virtual team onboarding are discussed

    Deception Detection: An Exploration of Annotated Text-Based Cues

    Get PDF
    Do embedded textual cues in asynchronous communication affect deceptive message detection? The expanded use of social media and rich media applications in business make this an important issue. Prior research indicates deception commonly occurs in all forms of communication and people have difficulty detecting its use. Asynchronous online communications are no exception and offer users a variety of media choices which may complicate deception detection, particularly if the sender has strategically selected a channel intended to disguise their intentions. The current study investigated whether embedded, non-verbal cues in common media forms found in asynchronous online venues influenced deception detection. Drawing on media synchronicity theory, results suggest embedding non-verbal cues in the form of annotated text can enhance deception detection. Overall, the findings suggest managers must be wary of sender motivations, which can influence message veracity, particularly in low synchronicity environments where media is subject to edits and manipulations

    Systems engineering and integration: Advanced avionics laboratories

    Get PDF
    In order to develop the new generation of avionics which will be necessary for upcoming programs such as the Lunar/Mars Initiative, Advanced Launch System, and the National Aerospace Plane, new Advanced Avionics Laboratories are required. To minimize costs and maximize benefits, these laboratories should be capable of supporting multiple avionics development efforts at a single location, and should be of a common design to support and encourage data sharing. Recent technological advances provide the capability of letting the designer or analyst perform simulations and testing in an environment similar to his engineering environment and these features should be incorporated into the new laboratories. Existing and emerging hardware and software standards must be incorporated wherever possible to provide additional cost savings and compatibility. Special care must be taken to design the laboratories such that real-time hardware-in-the-loop performance is not sacrificed in the pursuit of these goals. A special program-independent funding source should be identified for the development of Advanced Avionics Laboratories as resources supporting a wide range of upcoming NASA programs
    • 

    corecore