4 research outputs found

    On mixed abstraction, languages and simulation approach to refinement with SystemC AMS

    Get PDF
    Executable specifications and simulations arecornerstone to system design flows. Complex mixed signalembedded systems can be specified with SystemC AMSwhich supports abstraction and extensible models of computation. The language contains semantics for moduleconnections and synchronization required in analog anddigital interaction. Through the synchronization layer, user defined models of computation, solvers and simulators can be unified in the SystemC AMS simulator for achieving low level abstraction and model refinement. These improvements assist in amplifying model aspects and their contribution to the overall system behavior. This work presents cosimulating refined models with timed data flow paradigm of SystemC AMS. The methodology uses Cbased interaction between simulators. An RTL model ofdata encryption standard is demonstrated as an example.The methodology is flexible and can be applied in earlydesign decision trade off, architecture experimentation and particularly for model refinement and critical behavior analysis

    Methoden und Beschreibungssprachen zur Modellierung und Verifikation vonSchaltungen und Systemen: MBMV 2015 - Tagungsband, Chemnitz, 03. - 04. MĂ€rz 2015

    Get PDF
    Der Workshop Methoden und Beschreibungssprachen zur Modellierung und Verifikation von Schaltungen und Systemen (MBMV 2015) findet nun schon zum 18. mal statt. Ausrichter sind in diesem Jahr die Professur Schaltkreis- und Systementwurf der Technischen UniversitĂ€t Chemnitz und das Steinbeis-Forschungszentrum Systementwurf und Test. Der Workshop hat es sich zum Ziel gesetzt, neueste Trends, Ergebnisse und aktuelle Probleme auf dem Gebiet der Methoden zur Modellierung und Verifikation sowie der Beschreibungssprachen digitaler, analoger und Mixed-Signal-Schaltungen zu diskutieren. Er soll somit ein Forum zum Ideenaustausch sein. Weiterhin bietet der Workshop eine Plattform fĂŒr den Austausch zwischen Forschung und Industrie sowie zur Pflege bestehender und zur KnĂŒpfung neuer Kontakte. Jungen Wissenschaftlern erlaubt er, ihre Ideen und AnsĂ€tze einem breiten Publikum aus Wissenschaft und Wirtschaft zu prĂ€sentieren und im Rahmen der Veranstaltung auch fundiert zu diskutieren. Sein langjĂ€hriges Bestehen hat ihn zu einer festen GrĂ¶ĂŸe in vielen Veranstaltungskalendern gemacht. Traditionell sind auch die Treffen der ITGFachgruppen an den Workshop angegliedert. In diesem Jahr nutzen zwei im Rahmen der InnoProfile-Transfer-Initiative durch das Bundesministerium fĂŒr Bildung und Forschung geförderte Projekte den Workshop, um in zwei eigenen Tracks ihre Forschungsergebnisse einem breiten Publikum zu prĂ€sentieren. Vertreter der Projekte Generische Plattform fĂŒr SystemzuverlĂ€ssigkeit und Verifikation (GPZV) und GINKO - Generische Infrastruktur zur nahtlosen energetischen Kopplung von Elektrofahrzeugen stellen Teile ihrer gegenwĂ€rtigen Arbeiten vor. Dies bereichert denWorkshop durch zusĂ€tzliche Themenschwerpunkte und bietet eine wertvolle ErgĂ€nzung zu den BeitrĂ€gen der Autoren. [... aus dem Vorwort

    Efficient Modelling and Simulation Methodology for the Design of Heterogeneous Mixed-Signal Systems on Chip

    Get PDF
    Systems on Chip (SoCs) and Systems in Package (SiPs) are key parts of a continuously broadening range of products, from chip cards and mobile phones to cars. Besides an increasing amount of digital hardware and software for data processing and storage, they integrate more and more analogue/RF circuits, sensors, and actuators to interact with their (analogue) environment. This trend towards more complex and heterogeneous systems with more intertwined functionalities is made possible by the continuous advances in the manufacturing technologies and pushed by market demand for new products and product variants. Therefore, the reuse and retargeting of existing component designs becomes more and more important. However, all these factors make the design process increasingly complex and multidisciplinary. Nowadays, the design of the individual components is usually well understood and optimised through the usage of a diversity of CAD/EDA tools, design languages, and data formats. These are based on applying specific modelling/abstraction concepts, description formalisms (also called Models of Computation (MoCs)) and analysis/simulation methods. The designer has to bridge the gaps between tools and methodologies using manual conversion of models and proprietary tool couplings/integrations, which is error-prone and time-consuming. A common design methodology and platform to manage, exchange, and collaboratively develop models of different formats and of different levels of abstraction is missing. The verification of the overall system is a big problem, as it requires the availability of compatible models for each component at the right level of abstraction to achieve satisfying results with respect to the system functionality and test coverage, but at the same time acceptable simulation performance in terms of accuracy and speed. Thus, the big challenge is the parallel integration of these very different part design processes. Therefore, the designers need a common design and simulation platform to create and refine an executable specification of the overall system (a virtual prototype) on a high level of abstraction, which supports different MoCs. This makes possible the exploration of different architecture options, estimation of the performance, validation of re-used parts, verification of the interfaces between heterogeneous components and interoperability with other systems as well as the assessment of the impacts of the future working environment and the manufacturing technologies used to realise the system. For embedded Analogue and Mixed-Signal (AMS) systems, the C++-based SystemC with its AMS extensions, to which recent standardisation the author contributed, is currently establishing itself as such a platform. This thesis describes the author's contribution to solve the modelling and simulation challenges mentioned above in three thematic phases. In the first phase, the prototype of a web-based platform to collect models from different domains and levels of abstraction together with their associated structural and semantical meta information has been developed and is called ModelLib. This work included the implementation of a hierarchical access control mechanism, which is able to protect the Intellectual Property (IP) constituted by the model at different levels of detail. The use cases developed for this tool show how it can support the AMS SoC design process by fostering the reuse and collaborative development of models for tasks like architecture exploration, system validation, and creation of more and more elaborated models of the system. The experiences from the ModelLib development delivered insight into which aspects need to be especially addressed throughout the development of models to make them reusable: mainly flexibility, documentation, and validation. This was the starting point for the development of an efficient modelling methodology for the top-down design and bottom-up verification of RF Systems based on the systematic usage of behavioural models in the second phase. One outcome is the developed library of well documented, parameterisable, and pin-accurate VHDL-AMS models of typical analogue/digital/RF components of a transceiver. The models offer the designer two sets of parameters: one based on the performance specifications and one based on the device parameters back-annotated from the transistor-level implementation. The abstraction level used for the description of the respective analogue/digital/RF component behaviour has been chosen to achieve a good trade-off between accuracy, fidelity, and simulation performance. The pin-accurate model interfaces facilitate the integration of transistor-level models for the validation of the behavioural models or the verification of a component implementation in the system context. These properties make the models suitable for different design tasks such as architecture exploration or overall system validation. This is demonstrated on a model of a binary Frequency-Shift Keying (FSK) transmitter parameterised to meet very different target specifications. This project showed also the limits in terms of abstraction and simulation performance of the "classical" AMS Hardware Description Languages (HDLs). Therefore, the third and last phase was dedicated to further raise the abstraction level for the description of complex and heterogeneous AMS SoCs and thus enable their efficient simulation using different synchronised MoCs. This work uses the C++-based simulation framework SystemC with its AMS extensions. New modelling capabilities going beyond the standardised SystemC AMS extensions have been introduced to describe energy conserving multi-domain systems in a formal and consistent way at a high level of abstraction. To this end, all constants, variables, and parameters of the system model, which represent a physical quantity, can now declare their dimension and associated system of units as an intrinsic part of their data type. Assignments to them need to contain besides the value also the correct measurement unit. This allows a much more precise but still compact definition of the models' interfaces and equations. Thus, the C++ compiler can check the correct assembly of the components and the coherency of the equations by means of dimensional analysis. The implementation is based on the Boost.Units library, which employs template metaprogramming techniques. A dedicated filter for the measurement units data types has been implemented to simplify the compiler messages and thus facilitate the localisation of unit errors. To ensure the reusability of models despite precisely defined interfaces, their interfaces and behaviours need to be parametrisable in a well-defined manner. The enabling implementation techniques for this have been demonstrated with the developed library of generic block diagram component models for the Timed Data Flow (TDF) MoC of the SystemC AMS extensions. These techniques are also the key to integrate a new MoC based on the bond graph formalism into the SystemC AMS extensions. Bond graphs facilitate the unified description of the energy conserving parts of heterogeneous systems with the help of a small set of modelling primitives parametrisable to the physical domain. The resulting models have a simulation performance comparable to an equivalent signal flow model

    HARDWARE AND SOFTWARE ARCHITECTURES FOR ENERGY- AND RESOURCE-EFFICIENT SIGNAL PROCESSING SYSTEMS

    Get PDF
    For a large class of digital signal processing (DSP) systems, design and implementation of hardware and software is challenging due to stringent constraints on energy and resource requirements. In this thesis, we develop methods to address this challenge by proposing new constraint-aware system design methods for DSP systems, and energy- and resource-optimized designs of key DSP subsystems that are relevant across various application areas. In addition to general methods for optimizing energy consumption and resource utilization, we present streamlined designs that are specialized to efficiently address platform-dependent constraints. We focus on two specific aspects in development of energy- and resource-optimized design techniques: (1) Application-specific systems and architectures for energy- and resource- efficient design. First, we address challenges in efficient implementation of wireless sensor network building energy monitoring systems (WSNBEMSs). We develop new energy management schemes in order to maximize system lifetime for WSNBEMSs, and demonstrate that system lifetime can be improved significantly without affecting monitoring accuracy. We also present resource efficient, field programmable gate array (FPGA) architecture for implementation of orthogonal frequency division multiplexing (OFDM) systems. We have demonstrated that our design provides at least 8.8% enhancement in terms of resource efficiency compared to Xilinx FFT v7.1 within the same OFDM configuration. (2) Dataflow-based methods for structured design and implementation of energy- and resource- efficient DSP systems. First, we introduce a dataflow-based design approach based on integrating interrupt-based signal acquisition in context of parameterized synchronous dataflow (PSDF) modeling. We demonstrate that by applying our approach, energy- and resource-efficient embedded software can be derived systematically from high level models of dynamic, data-driven applications systems (DDDASs) functional structure. Also, we present an in-depth development of lightweight dataflow-Verilog (LWDF-V), which is an integration of the LWDF programming model with the Verilog hardware description language (HDL), and we demonstrate the utility of LWDF-V for design and implementation of digital systems for signal processing. We emphasize efficient of LWDF with HDLs, and emphasize the application of LWDF-V to design DSP systems with dynamic parameters on FPGA platforms
    corecore