864 research outputs found

    A neural circuit for navigation inspired by C. elegans Chemotaxis

    Full text link
    We develop an artificial neural circuit for contour tracking and navigation inspired by the chemotaxis of the nematode Caenorhabditis elegans. In order to harness the computational advantages spiking neural networks promise over their non-spiking counterparts, we develop a network comprising 7-spiking neurons with non-plastic synapses which we show is extremely robust in tracking a range of concentrations. Our worm uses information regarding local temporal gradients in sodium chloride concentration to decide the instantaneous path for foraging, exploration and tracking. A key neuron pair in the C. elegans chemotaxis network is the ASEL & ASER neuron pair, which capture the gradient of concentration sensed by the worm in their graded membrane potentials. The primary sensory neurons for our network are a pair of artificial spiking neurons that function as gradient detectors whose design is adapted from a computational model of the ASE neuron pair in C. elegans. Simulations show that our worm is able to detect the set-point with approximately four times higher probability than the optimal memoryless Levy foraging model. We also show that our spiking neural network is much more efficient and noise-resilient while navigating and tracking a contour, as compared to an equivalent non-spiking network. We demonstrate that our model is extremely robust to noise and with slight modifications can be used for other practical applications such as obstacle avoidance. Our network model could also be extended for use in three-dimensional contour tracking or obstacle avoidance

    A simulation model of the locomotion controllers for the nematode Caenorhabditis elegans

    Get PDF
    This paper presents a simple yet biologicallygrounded model of the C. elegans neural circuit for forward locomotive control. The model considers a limited subset of the C. elegans nervous system, within a minimal two-dimensional environment. Despite its reductionist approach, this model is sufficiently rich to generate patterns of undulations that are reminiscent of the biological worm’s behaviour and qualitatively similar to patterns which have been shown to generate locomotion in a model of a richer physical environment. Interestingly, and contrary to conventional wisdom about neural circuits for motor control, our results are consistent with the conjecture that the worm may be relying on feedback from the shape of its body to generate undulations that propel it forward or backward

    Evolutionary robotics and neuroscience

    Get PDF
    No description supplie

    Modeling and Mathematical Analysis of Swarms of Microscopic Robots

    Full text link
    The biologically-inspired swarm paradigm is being used to design self-organizing systems of locally interacting artificial agents. A major difficulty in designing swarms with desired characteristics is understanding the causal relation between individual agent and collective behaviors. Mathematical analysis of swarm dynamics can address this difficulty to gain insight into system design. This paper proposes a framework for mathematical modeling of swarms of microscopic robots that may one day be useful in medical applications. While such devices do not yet exist, the modeling approach can be helpful in identifying various design trade-offs for the robots and be a useful guide for their eventual fabrication. Specifically, we examine microscopic robots that reside in a fluid, for example, a bloodstream, and are able to detect and respond to different chemicals. We present the general mathematical model of a scenario in which robots locate a chemical source. We solve the scenario in one-dimension and show how results can be used to evaluate certain design decisions.Comment: 2005 IEEE Swarm Intelligence Symposium, Pasadena, CA June 200

    Optimal design of cascaded control scheme for PV system using BFO algorithm

    Get PDF
    In this paper presents Bacteria Foraging Optimization (BFO) algorithm based approach to find the optimum design values for the Proportional-Integral (PI) Controllers in cascaded structure is presented. Tuning the values of four PI controllers is very complex when the system is difficult to express in terms of mathematical model due to system nonlinearity. Response surface methodology (RSM) is used to formulate a mathematical design which is required to apply optimization algorithm. To examine the performance of BFO algorithm in obtaining optimum values of multiple PI controllers, a grid connected Photovoltaic (PV) system is chosen. Transient performance of the PI controller with optimum design values is evaluated under grid fault conditions. The system is simulated using PSCAD/EMTDC. Simulation results have shown the validity of the optimal design values obtained from RSM-BFO approach under different disturbances and system parameter variations

    IMPLEMENTATION OF CONTROL ALGORITHMS IN BALL MAGNETIC LEVITATION SYSTEM TO IMPROVE SYSTEM PARAMETERS

    Get PDF
    Magnetic Levitation System (Maglev) is an approach which is currently widely applied in different areas like semiconductor, transportation, power generation, household appliances and etc. Since Magnetic Levitation System is a highly non-linear system, constructing a successful controller which has robust performance becomes a big challenge. The most conventional method of building Maglev is PID controller. However findings of controller’s parameters which ar

    Low-Cost Motility Tracking System (LOCOMOTIS) for time-lapse microscopy applications and cell visualisation

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund.Direct visualisation of cells for the purpose of studying their motility has typically required expensive microscopy equipment. However, recent advances in digital sensors mean that it is now possible to image cells for a fraction of the price of a standard microscope. Along with low-cost imaging there has also been a large increase in the availability of high quality, open-source analysis programs. In this study we describe the development and performance of an expandable cell motility system employing inexpensive, commercially available digital USB microscopes to image various cell types using time-lapse and perform tracking assays in proof-of-concept experiments. With this system we were able to measure and record three separate assays simultaneously on one personal computer using identical microscopes, and obtained tracking results comparable in quality to those from other studies that used standard, more expensive, equipment. The microscopes used in our system were capable of a maximum magnification of 413.6x. Although resolution was lower than that of a standard inverted microscope we found this difference to be indistinguishable at the magnification chosen for cell tracking experiments (206.8x). In preliminary cell culture experiments using our system, velocities (mean mm/min ± SE) of 0.81±0.01 (Biomphalaria glabrata hemocytes on uncoated plates), 1.17±0.004 (MDA-MB-231 breast cancer cells), 1.24±0.006 (SC5 mouse Sertoli cells) and 2.21±0.01 (B. glabrata hemocytes on Poly-L-Lysine coated plates), were measured and are consistent with previous reports. We believe that this system, coupled with open-source analysis software, demonstrates that higher throughput time-lapse imaging of cells for the purpose of studying motility can be an affordable option for all researchers. © 2014 Lynch et al

    PID CONTROLLER TUNING OF 3-PHASE SEPARATOR IN OIL & GAS INDUSTRY USING BACTERIA FORAGING OPTIMIZATION ALGORITHM

    Get PDF
    In oil and gas industry, one of the most important stages in processing petroleum is separation. It can be classified by operating configuration such as vertical, horizontal and spherical or by its function which is 2-phase or 3-phase. In this paper, vertical 3-phase separator will be chosen and researched. 3-phase separator is used to separate water, oil and gas. Gas will be at the top, oil will be the middle layer and water will be at the bottom due to gravitational force and the density of the substance. The objective is to tune the PID controller controlling the level of the water in the separator. Outflow rate of the water from the bottom of the separator will be used to control the water level. Currently there are controlling methods namely PI control using trial and error method, PI control using Butterworth filter design method and IMC method. These methods were having quite high % overshoot and long settling time. So, this paper will introduce Bacterial Foraging Optimization Algorithm (BFOA) in optimizing the parameters for PI control. BFOA mimics the behaviour of the bacteria in searching for highest food concentration which then modified to search the best parameters for the PID controller. BFOA will be able to find the best parameters compared with the conventional methods and show better performance than PI control using trial and error method, PI control using Butterworth filter design method or IMC method. BFOA will be studied and other existing conventional methods as well. Simulation will be done based on the mathematical model of the 3-phase separator

    Quantitative Performance Bounds in Biomolecular Circuits due to Temperature Uncertainty

    Get PDF
    Performance of biomolecular circuits is affected by changes in temperature, due to its influence on underlying reaction rate parameters. While these performance variations have been estimated using Monte Carlo simulations, how to analytically bound them is generally unclear. To address this, we apply control-theoretic representations of uncertainty to examples of different biomolecular circuits, developing a framework to represent uncertainty due to temperature. We estimate bounds on the steady-state performance of these circuits due to temperature uncertainty. Through an analysis of the linearised dynamics, we represent this uncertainty as a feedback uncertainty and bound the variation in the magnitude of the input-output transfer function, providing a estimate of the variation in frequency-domain properties. Finally, we bound the variation in the time trajectories, providing an estimate of variation in time-domain properties. These results should enable a framework for analytical characterisation of uncertainty in biomolecular circuit performance due to temperature variation and may help in estimating relative performance of different controllers
    • …
    corecore