3,957 research outputs found

    Successive Interference Cancellation in Heterogeneous Cellular Networks

    Full text link
    At present, operators address the explosive growth of mobile data demand by densification of the cellular network so as to reduce the transmitter-receiver distance and to achieve higher spectral efficiency. Due to such network densification and the intense proliferation of wireless devices, modern wireless networks are interference-limited, which motivates the use of interference mitigation and coordination techniques. In this work, we develop a statistical framework to evaluate the performance of multi-tier heterogeneous networks with successive interference cancellation (SIC) capabilities, accounting for the computational complexity of the cancellation scheme and relevant network related parameters such as random location of the access points (APs) and mobile users, and the characteristics of the wireless propagation channel. We explicitly model the consecutive events of canceling interferers and we derive the success probability to cancel the n-th strongest signal and to decode the signal of interest after n cancellations. When users are connected to the AP which provides the maximum average received signal power, the analysis indicates that the performance gains of SIC diminish quickly with n and the benefits are modest for realistic values of the signal-to-interference ratio (SIR). We extend the statistical model to include several association policies where distinct gains of SIC are expected: (i) minimum load association, (ii) maxi- mum instantaneous SIR association, and (iii) range expansion. Numerical results show the effectiveness of SIC for the considered association policies. This work deepens the understanding of SIC by defining the achievable gains for different association policies in multi-tier heterogeneous networks.Comment: submitted for journal publication, 13 pages, 6 figure

    Relaying Strategies for Uplink in Wireless Cellular Networks

    Full text link
    In this paper, we analyze the impact of relays on the uplink performance of FDMA cellular networks. We focus our analysis on Decode and Forward techniques, with the aim of measuring the improvements which can be achieved in terms of throughput and energy saving. We apply a stochastic geometry based approach to a scenario with inter-cell interference and reuse factor equal to 1. The first goal of this work is to observe what is the impact of various relay features, such as transmission power, location and antenna pattern, when a half-duplex constraint is imposed. The second goal is to determine how much relaying can be beneficial also for users who are not at the cell edge, and who can therefore use a direct link towards the base station. We show that if more refined decoding techniques, such as Successive Interference Cancellation and Superposition Coding, are properly used, considerable gains can be obtained for these mobiles as well.Comment: 30 pages, 10 figure

    Distributed Iterative Detection Based on Reduced Message Passing for Networked MIMO Cellular Systems

    Full text link
    This paper considers base station cooperation (BSC) strategies for the uplink of a multi-user multi-cell high frequency reuse scenario where distributed iterative detection (DID) schemes with soft/hard interference cancellation algorithms are studied. The conventional distributed detection scheme exchanges {soft symbol estimates} with all cooperating BSs. Since a large amount of information needs to be shared via the backhaul, the exchange of hard bit information is preferred, however a performance degradation is experienced. In this paper, we consider a reduced message passing (RMP) technique in which each BS generates a detection list with the probabilities for the desired symbol that are sorted according to the calculated probability. The network then selects the best {detection candidates} from the lists and conveys the index of the constellation symbols (instead of double-precision values) among the cooperating cells. The proposed DID-RMP achieves an inter-cell-interference (ICI) suppression with low backhaul traffic overhead compared with {the conventional soft bit exchange} and outperforms the previously reported hard/soft information exchange algorithms.Comment: 9 pages, 6 figures. IEEE Transactions on Vehicular Technology, 201

    Full-Duplex eNodeB and UE Design for 5G Networks

    Full text link
    The recent progress in the area of self-interference cancellation (SIC) design has enabled the development of full-duplex (FD) single and multiple antenna systems. In this paper, we propose a design for FD eNodeB (eNB) and user equipment (UE) for 5G networks. The use of FD operation enables simultaneous in-band uplink and downlink operation and thereby cutting down the spectrum requirement by half. FD operation requires the same subcarrier allocation to UE in both uplink and downlink. Long Term Evolution LTE) uses orthogonal frequency division multiple access (OFDMA) for downlink. To enable FD operation, we propose using single carrier frequency division multiple access SC-FDMA) for downlink along with the conventional method of using it for uplink. Taking advantage of channel reciprocity, singular value decomposition (SVD) based eamforming in the downlink allows multiple users (MU) to operate on same set of subcarriers. In uplink, frequency domain minimum mean square error (MMSE) equalizer along with successive interference cancellation with optimal ordering (SSIC-OO) algorithm is used to decouple signals of users operating in the same set of subcarriers. The work includes simulations showing efficient FD operation both at UE and eNB for downlink and uplink respectively.Comment: 7 pages and 6 figures, Accepted and will also be available in proceedings of Wireless Telecommunications Symposium (WTS) 201

    Performance Analysis of Non-Orthogonal Multicast in Two-tier Heterogeneous Networks

    Full text link
    With the explosive growth of mobile services, non-orthogonal broadcast/multicast transmissions can effectively improves spectrum efficiency. Nonorthogonal multiple access (NOMA) represents a paradigm shift from conventional orthogonal multiple-access (OMA) concepts and has been recognized as one of the key enabling technologies for fifth-generation (5G) mobile networks. In this paper, a two-tier heterogeneous network is studied, in which the wireless signal power is partitioned by the NOMA scheme. Moreover, the coverage probability, the average rate and the average QoE are derived to evaluate network performance. Simulation results show that compared with the OMA method, non-orthogonal broadcast/multicast method improve both the average user rate and QoE in the two-tier heterogeneous network

    Femtocell Architectures with Spectrum Sharing for Cellular Radio Networks

    Full text link
    Femtocells are an emerging technology aimed at providing gains to both network operators and end-users. These gains come at a cost of increased interference, specifically the cross network interference between the macrocell and femtocell networks. This interference is one of the main performance limiting factors in allowing an underlaid femtocell network to share the spectrum with the cellular network. To manage this interference, we first propose a femtocell architecture that orthog- onally partitions the network bandwidth between the macrocell and femtocell networks. This scheme eliminates the cross network interference thus giving the femtocells more freedom over their use of the spectrum. Specifically, no interference constraint is imposed by the cellular network allowing femto users to transmit at a constant power on randomly selected channels. Although simple, this scheme is enough to give gains up to 200% in sum rate. We then propose a second architecture where both networks share the bandwidth simultaneously. A femtocell power control scheme that relies on minimal coordination with the macrocell base station is used in conjunction with an interference sensing channel assignment mechanism. These two schemes together yield sum rate gains up to 200%. We then develop a technique for macro users to join a nearby femtocell and share a common chan- nel with a femtocell user through the use of successive interfer- ence cancellation. By adding this mechanism to the power control and channel assignment schemes, we show sum rate gains over 300% and up to 90% power savings for macrocell users.Comment: 9 pages, 8 figures, Accepted to the International Journal of Advances in Engineering Sciences and Applied Mathematics special issue on Multi-Terminal Information Theor

    Detection and Estimation Algorithms in Massive MIMO Systems

    Full text link
    This book chapter reviews signal detection and parameter estimation techniques for multiuser multiple-antenna wireless systems with a very large number of antennas, known as massive multi-input multi-output (MIMO) systems. We consider both centralized antenna systems (CAS) and distributed antenna systems (DAS) architectures in which a large number of antenna elements are employed and focus on the uplink of a mobile cellular system. In particular, we focus on receive processing techniques that include signal detection and parameter estimation problems and discuss the specific needs of massive MIMO systems. Simulation results illustrate the performance of detection and estimation algorithms under several scenarios of interest. Key problems are discussed and future trends in massive MIMO systems are pointed out.Comment: 7 figures, 14 pages. arXiv admin note: substantial text overlap with arXiv:1310.728

    Performance of Network-Assisted Full-Duplex for Cell-Free Massive MIMO

    Full text link
    Network assisted full-duplex (NAFD) is a spatial-division duplex technique for future wireless networks with cell-free massive multiple-input multiple-output (CF massive MIMO) network, where a large number of remote antenna units (RAUs), either using half-duplex or full-duplex, jointly support truly flexible duplex including time-division duplex, frequency-division duplex and full duplex on demand of uplink and downlink traffic by using network MIMO methods. With NAFD, bi-directional data rates of the wireless network could be increased and end-to-end delay could be reduced. In this paper, the spectral efficiency of NAFD communications in CF massive MIMO network with imperfect channel state information (CSI) is investigated under spatial correlated channels. Based on large dimensional random matrix theory, the deterministic equivalents for the uplink sum-rate with minimum-mean-square-error (MMSE) receiver as well as the downlink sum-rate with zero-forcing (ZF) and regularized zero-forcing (RZF) beamforming are derived. Numerical results show that under various environmental settings, the deterministic equivalents are accurate in both a large-scale system and system with a finite number of antennas. It is also shown that with the downlink-to-uplink interference cancellation, the uplink spectral efficiency of CF massive MIMO with NAFD could be improved. The spectral efficiencies of NAFD with different duplex configurations such as in-band full-duplex, and half-duplex are compared. With the same total numbers of transmit and receive antennas, NAFD with half-duplex RAUs offers a higher spectral efficiency. To alleviate the uplink-to-downlink interference, a novel genetic algorithm based user scheduling strategy (GAS) is proposed. Simulation results show that the achievable downlink sum-rate by using the GAS is greatly improved compared to that by using the random user scheduling

    Full-Duplex Transceiver for Future Cellular Network: A Smart Antenna Approach

    Full text link
    In this paper, we propose a transceiver architecture for full-duplex (FD) eNodeB (eNB) and FD user equipment (UE) transceiver. For FD communication,.i.e., simultaneous in-band uplink and downlink operation, same subcarriers can be allocated to UE in both uplink and downlink. Hence, contrary to traditional LTE, we propose using single-carrier frequency division multiple accesses (SC-FDMA) for downlink along with the conventional method of using it for uplink. The use of multiple antennas at eNB and singular value decomposition (SVD) in the downlink allows multiple users (MU) to operate on the same set of ubcarriers. In the uplink, successive interference cancellation with optimal ordering (SSIC-OO) algorithm is used to decouple signals of UEs operating in the same set of subcarriers. A smart antenna approach is adopted which prevents interference, in downlink of a UE, from uplink signals of other UEs sharing same subcarriers. The approach includes using multiple antennas at UEs to form directed beams towards eNode and nulls towards other UEs. The proposed architecture results in significant improvement of the overall spectrum efficiency per cell of the cellular network.Comment: arXiv admin note: text overlap with arXiv:1506.0213

    Large-Scale NOMA: Promises for Massive Machine-Type Communication

    Full text link
    We investigate on large-scale deployment of non-orthogonal multiple access (NOMA) for improved spectral and power efficiency in cellular networks to provide massive wireless connectivity (e.g. for machine-type communication [mMTC]). First, we describe the basics of single-antenna NOMA technology and its extension to co-located multiple-antenna NOMA as well as coordinated multipoint transmission (CoMP)-enabled NOMA technologies. Then we discuss some of the practical challenges of large-scale deployment of NOMA such as the inter-NOMA-interference (INI), inter-cell interference, and hardware implementation complexity. To this end, we present one key enabling technique to overcome the challenges of large-scale deployment of NOMA. Generally speaking, for a feasible large-scale NOMA implementation, sophisticated diversity enhancing techniques can be used to compensate for the degradation in coding gain and to decrease the complexity resulting from excessive INI and increased level of required successive interference cancellation (SIC). Furthermore, to massively extend NOMA over the network coverage area, NOMA transmitters have to cooperate in a generalized manner to serve all nearby users simultaneously
    • …
    corecore