338 research outputs found

    A Study on MIMO Wireless Communication Channel Performance in Correlated Channels

    Get PDF
    MIMO wireless communication system is gaining popularity by days due to its versatility and wide applicability. When signal travels through wireless link it gets affected due to the disturbances present in the channel i.e. different sorts of interference and noise. Plus because there may or may not be a Line of sight (LOS) path between transmitter and receiver signal copies leaving the transmitter at the same time reaches the receiver with different delays and attenuation due to multiple reflections and interfere with each other at the receiver. Therefore fading of received signal power is also observed in case of a wireless MIMO link. In case of wireless two most important objectives can be channel estimation and signal detection. The importance of the wireless channel estimation can be attributed to faithful signal detection and transmit beam forming, power allocation etc. when Channel state information (CSI) is communicated to the transmitter via feedback loop in case of uni-directional channel or by simultaneous estimation by the transmitter itself in case of bi-directional channel. This text introduces some aspects of signal detection and mostly different aspects of channel estimation and explains why it is important in context of signal detection, beam forming etc. A brief introduction to antenna arrays and beam forming procedures have been given here. The cause of occurrence of spatial and temporal correlations have been discussed and different ways of modelling the spatial and temporal correlations involved are also briefly introduced in this text. How different link and link-end properties e.g. antenna spacing, angular spread of radiation beam, mean angle of radiation, mutual coupling present between elements of an antenna array etc. affects the channel correlations thereby affecting the performance of the MIMO wireless communication channel. Modelling of antenna mutual coupling and different estimation and compensation techniques are also discussed here

    Direction of Arrival Estimation for Radio Positioning: a Hardware Implementation Perspective

    Get PDF
    Nowadays multiple antenna wireless systems have gained considerable attention due to their capability to increase performance. Advances in theory have introduced several new schemes that rely on multiple antennas and aim to increase data rate, diversity gain, or to provide multiuser capabilities, beamforming and direction finding (DF) features. In this respect, it has been shown that a multiple antenna receiver can be potentially used to perform radio localization by using the direction of arrival (DoA) estimation technique. In this field, the literature is extensive and gathers the results of almost four decades of research activities. Among the most cited techniques that have been developed, we find the so called high-resolution algorithms, such as multiple signal classification (MUSIC), or estimation of signal parameters via rotational invariance (ESPRIT). Theoretical analysis as well as simulation results have demonstrated their excellent performance to the point that they are usually considered as reference for the comparison with other algorithms. However, such a performance is not necessarily obtained in a real system due to the presence of non idealities. These can be divided into two categories: the impairments due to the antenna array, and the impairments due to the multiple radio frequency (RF) and acquisition front-ends (FEs). The former are strongly influenced by the manufacturing accuracy and, depending on the required DoA resolution, have to be taken into account. Several works address these issues in the literature. The multiple FE non idealities, instead, are usually not considered in the DoA estimation literature, even if they can have a detrimental effect on the performance. This has motivated the research work in this thesis that addresses the problem of DoA estimation from a practical implementation perspective, emphasizing the impact of the hardware impairments on the final performance. This work is substantiated by measurements done on a state-of-the-art hardware platform that have pointed out the presence of non idealities such as DC offsets, phase noise (PN), carrier frequency offsets (CFOs), and phase offsets (POs) among receivers. Particularly, the hardware platform will be herein described and examined to understand what non idealities can affect the DoA estimation performance. This analysis will bring to identify which features a DF system should have to reach certain performance. Another important issue is the number of antenna elements. In fact, it is usually limited by practical considerations, such as size, costs, and also complexity. However, the most cited DoA estimation algorithms need a high number of antenna elements, and this does not yield them suitable to be implemented in a real system. Motivated by this consideration, the final part of this work will describe a novel DoA estimation algorithm that can be used when multipath propagation occurs. This algorithm does not need a high number of antenna elements to be implemented, and it shows good performance despite its low implementation/computational complexity

    MCRB-based Performance Analysis of 6G Localization under Hardware Impairments

    Get PDF
    Location information is expected to be the key to meeting the needs of communication and context-aware services in 6G systems. User localization is achieved based on delay and/or angle estimation using uplink or downlink pilot signals. However, hardware impairments (HWIs) distort the signals at both the transmitter and receiver sides and thus affect the localization performance. While this impact can be ignored at lower frequencies where HWIs are less severe, modeling and analysis efforts are needed for 6G to evaluate the localization degradation due to HWIs. In this work, we model various types of impairments and conduct a misspecified Cram\ue9r-Rao bound analysis to evaluate the HWI-induced performance loss. Simulation results with different types of HWIs show that each HWI leads to a different level of degradation in angle and delay estimation performance

    Matrix Completion-Based Channel Estimation for MmWave Communication Systems With Array-Inherent Impairments

    Get PDF
    Hybrid massive MIMO structures with reduced hardware complexity and power consumption have been widely studied as a potential candidate for millimeter wave (mmWave) communications. Channel estimators that require knowledge of the array response, such as those using compressive sensing (CS) methods, may suffer from performance degradation when array-inherent impairments bring unknown phase errors and gain errors to the antenna elements. In this paper, we design matrix completion (MC)-based channel estimation schemes which are robust against the array-inherent impairments. We first design an open-loop training scheme that can sample entries from the effective channel matrix randomly and is compatible with the phase shifter-based hybrid system. Leveraging the low-rank property of the effective channel matrix, we then design a channel estimator based on the generalized conditional gradient (GCG) framework and the alternating minimization (AltMin) approach. The resulting estimator is immune to array-inherent impairments and can be implemented to systems with any array shapes for its independence of the array response. In addition, we extend our design to sample a transformed channel matrix following the concept of inductive matrix completion (IMC), which can be solved efficiently using our proposed estimator and achieve similar performance with a lower requirement of the dynamic range of the transmission power per antenna. Numerical results demonstrate the advantages of our proposed MC-based channel estimators in terms of estimation performance, computational complexity and robustness against array-inherent impairments over the orthogonal matching pursuit (OMP)-based CS channel estimator.Comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    MCRB-based Performance Analysis of 6G Localization under Hardware Impairments

    Get PDF
    Location information is expected to be the key to meeting the needs of communication and context-aware services in 6G systems. User localization is achieved based on delay and/or angle estimation using uplink or downlink pilot signals. However, hardware impairments (HWIs) distort the signals at both the transmitter and receiver sides and thus affect the localization performance. While this impact can be ignored at lower frequencies where HWIs are less severe, modeling and analysis efforts are needed for 6G to evaluate the localization degradation due to HWIs. In this work, we model various types of impairments and conduct a misspecified Cram\ue9r-Rao bound analysis to evaluate the HWI-induced performance loss. Simulation results with different types of HWIs show that each HWI leads to a different level of degradation in angle and delay estimation performance

    Array imperfection calibration for wireless channel multipath characterisation

    Get PDF
    As one of the fastest growing technologies in modern telecommunications, wireless networking has become a very important and indispensable part in our life. A good understanding of the wireless channel and its key physical parameters are extremely useful when we want to apply them into practical applications. In wireless communications, the wireless channel refers to the propagation of electromagnetic radiation from a transmitter to a receiver. The estimation of multipath channel parameters, such as angle of depature (AoD), angle of arrival (AoA), and time difference of arrival (TDoA), is an active research problem and its typical applications are radar, communication, vehicle navigation and localization in the indoor environment where the GPS service is impractical. However, the performance of the parameter estimation deteriorates significantly in the presence of array imperfections, which include the mutual coupling, antenna location error, phase uncertainty and so on. These array imperfections are hardly to be calibrated completely via antenna design. In this thesis, we experimentally evaluate an B matrix method to cope with these array imperfection, our results shows a great improvement of AoA estimation results
    corecore