1,021 research outputs found

    Work-Conserving Distributed Schedulers

    Get PDF
    Buffered multistage interconnection networks offer one of the most scalable and cost-effective approaches to building high capacity routers and switches. Unfortunately, the performance of such systems has been difficult to predict in the presence of the extreme traffic conditions that can arise in Internet routers. Recent work introduced the idea of distributed scheduling, to regulate the flow of traffic in such systems. This work demonstrated (using simulation and experimental measurements) that distributed scheduling can en-able robust performance, even in the presence of adversarial traffic patterns. In this paper, we show that appropriately designed distributed scheduling algorithms are provably work-conserving for speedups of 2 or more. Two of the three algorithms presented were inspired by algorithms previously developed for crossbar scheduling. The third has no direct counterpart in the crossbar scheduling context. In our analysis, we show that distributed schedulers based on blocking flows in small-depth acyclic flow graphs can be work-conserving, just as certain crossbar schedulers based on maximal bipartite matchings have been shown to be work-conserving. We also study the performance of practical variants of the work-conserving algorithms with speedups less than 2, using simulation. These studies demonstrate that distributed scheduling ensures excellent performance under extreme traffic conditions for speedups of less than 1.5

    A Multi-Stage Packet-Switch Based on NoC Fabrics for Data Center Networks

    Get PDF
    Bandwidth-hungry applications such as Cloud computing, video sharing and social networking drive the creation of more powerful Data Centers (DCs) to manage the large amount of packetized traffic. Data center network (DCN) topologies rely on thousands of servers that exchange data via the switching backbone. Cluster switches and routers are employed to provide interconnectivity between elements of the same DC and inter DCs and must be able to handle the continuously variable loads. Hence, robust and scalable switching modules are needed. Conventional DCN switches adopt crossbars or/and blocks of memories in multistage interconnection architectures (commonly 2-Tiers or 3-Tiers). However, current multistage packet switch architectures, with their space-memory variants, are either too complex to implement, have poor performance, or not cost effective. In this paper, we propose a novel and highly scalable multistage packet-switch design based on Networks-on-Chip (NoC) fabrics for DCNs. In particular, we describe a novel three-stage packet-switch fabric with a Round-Robin packets dispatching scheme where each central stage module is based on a Unidirectional NoC (UDN), instead of a conventional single hop crossbar fabric. The proposed design, referred to as Clos- UDN, overcomes all the shortcomings of conventional multistage architectures. In particular, as we shall demonstrate, the proposed Clos-UDN architecture: (i) Obviates the need for a complex and costly input modules, by means of few, yet simple, input FIFO queues. (ii) Avoids the need for a complex and synchronized scheduling process over a high number of input-output modules and/or port pairs. (iii) Provides speedup, load balancing and path-diversity thanks to a dynamic dispatching scheme as well as the NoC based fabric nature. Extensive simulation studies are conducted to compare the proposed Clos-UDN switch to conventional multistage switches. Simulation results show that the Clos-UDN outperforms conventional design under a wide range of input traffic scenarios, making it highly appealing for ultra-high capacity DC networks

    Competitive Analysis of Constrained Queueing Systems

    Get PDF
    We consider the classical problem of constrained queueing (or switched networks): There is a set of N queues to which unit sized packets arrive. The queues are interdependent, so that at any time step, only a subset of the queues can be activated. One packet from each activated queue can be transmitted, and leaves the system. The set of feasible subsets that can be activated, denoted S, is downward closed and is known in advance. The goal is to find a scheduling policy that minimizes average delay (or flow time) of the packets. The constrained queueing problem models several practical settings including packet transmission in wireless networks and scheduling cross-bar switches. In this paper, we study this problem using the the competitive analysis: The packet arrivals can be adversarial and the scheduling policy only uses information about packets currently queued in the system. We present an online algorithm, that for any epsilon > 0, has average flow time at most O(R^2/epsilon^3*OPT+NR) when given (1+epsilon) speed, i.e., the ability to schedule (1+epsilon) packets on average per time step. Here, R is the maximum number of queues that can be simultaneously scheduled, and OPT is the average flow time of the optimal policy. This asymptotic competitive ratio O(R^3/epsilon^3) improves upon the previous O(N/epsilon^2) which was obtained in the context of multi-dimensional scheduling [Im/Kulkarni/Munagala, FOCS 2015]. In the full general model where N can be exponentially larger than R, this is an exponential improvement. The algorithm presented in this paper is based on Makespan estimates which is very different from that in [Im/Kulkarni/Munagala, FOCS 2015], a variation of the Max-Weight algorithm. Further, our policy is myopic, meaning that scheduling decisions at any step are based only on the current composition of the queues. We finally show that speed augmentation is necessary to achieve any bounded competitive ratio

    On packet switch design

    Get PDF

    Fabric-on-a-Chip: Toward Consolidating Packet Switching Functions on Silicon

    Get PDF
    The switching capacity of an Internet router is often dictated by the memory bandwidth required to bu¤er arriving packets. With the demand for greater capacity and improved service provisioning, inherent memory bandwidth limitations are encountered rendering input queued (IQ) switches and combined input and output queued (CIOQ) architectures more practical. Output-queued (OQ) switches, on the other hand, offer several highly desirable performance characteristics, including minimal average packet delay, controllable Quality of Service (QoS) provisioning and work-conservation under any admissible traffic conditions. However, the memory bandwidth requirements of such systems is O(NR), where N denotes the number of ports and R the data rate of each port. Clearly, for high port densities and data rates, this constraint dramatically limits the scalability of the switch. In an effort to retain the desirable attributes of output-queued switches, while significantly reducing the memory bandwidth requirements, distributed shared memory architectures, such as the parallel shared memory (PSM) switch/router, have recently received much attention. The principle advantage of the PSM architecture is derived from the use of slow-running memory units operating in parallel to distribute the memory bandwidth requirement. At the core of the PSM architecture is a memory management algorithm that determines, for each arriving packet, the memory unit in which it will be placed. However, to date, the computational complexity of this algorithm is O(N), thereby limiting the scalability of PSM switches. In an effort to overcome the scalability limitations, it is the goal of this dissertation to extend existing shared-memory architecture results while introducing the notion of Fabric on a Chip (FoC). In taking advantage of recent advancements in integrated circuit technologies, FoC aims to facilitate the consolidation of as many packet switching functions as possible on a single chip. Accordingly, this dissertation introduces a novel pipelined memory management algorithm, which plays a key role in the context of on-chip output- queued switch emulation. We discuss in detail the fundamental properties of the proposed scheme, along with hardware-based implementation results that illustrate its scalability and performance attributes. To complement the main effort and further support the notion of FoC, we provide performance analysis of output queued cell switches with heterogeneous traffic. The result is a flexible tool for obtaining bounds on the memory requirements in output queued switches under a wide range of tra¢ c scenarios. Additionally, we present a reconfigurable high-speed hardware architecture for real-time generation of packets for the various traffic scenarios. The work presented in this thesis aims at providing pragmatic foundations for designing next-generation, high-performance Internet switches and routers

    Design and stability analysis of high performance packet switches

    Get PDF
    With the rapid development of optical interconnection technology, high-performance packet switches are required to resolve contentions in a fast manner to satisfy the demand for high throughput and high speed rates. Combined input-crosspoint buffered (CICB) switches are an alternative to input-buffered (IB) packet switches to provide high-performance switching and to relax arbitration timing for packet switches with high-speed ports. A maximum weight matching (MWM) scheme can provide 100% throughput under admissible traffic for lB switches. However, the high complexity of MWM prohibits its implementation in high-speed switches. In this dissertation, a feedback-based arbitration scheme for CICB switches is studied, where cell selection is based on the provided service to virtual output queues (VOQs). The feedback-based scheme is named round-robin with adaptable frame size (RR-AF) arbitration. The frame size in RR-AF is adaptably changed by the serviced and unserviced traffic. If a switch is stable, the switch provides 100% throughput. Here, it is proved that RR-AF can achieve 100% throughput under uniform admissible traffic. Switches with crosspoint buffers need to consider the transmission delays, or round-trip times to define the crosspoint buffer size. As the buffered crossbar switch can be physically located far from the input ports, actual round-trip times can be non-negligible. To support non-negligible round-trip times in a buffered crossbar switch, the crosspoint buffer size needs to be increased. To satisfy this demand, this dissertation investigates how to select the crosspoint buffer size under non-negligible round trip times and under uniform traffic. With the analysis of stability margin, the relationship between the crosspoint buffer size and round-trip time is derived. Considering that CICB switches deliver higher performance than lB switches and require no speedup, this dissertation investigates the maximum throughput performance that these switches can achieve. It is shown that CICB switches without speedup achieve 100% throughput under any admissible traffic through a fluid model. In addition, a new hybrid scheme, based on longest queue-first (as input arbitration) and longest column occupancy first (as output arbitration) is proposed, which achieves 100% throughput under uniform and non-uniform traffic patterns. In order to give a better insight of the feedback nature of arbitration scheme for CICB switches, a frame-based round-robin arbitration scheme with explicit feedback control (FRE) is introduced. FRE dynamically sets the frame size according to the input load and to the accumulation of cells in a VOQ. FRE is used as the input arbitration scheme and it is combined with RR, PRR, and FRE as output arbitration schemes. These combined schemes deliver high performance under uniform and nonuniform traffic models using a buffered crossbar with one-cell crosspoint buffers. The novelty of FRE lies in that each VOQ sets the frame size by an adjustable parameter, Δ(i,j) which indicates the degree of service needed by VOQ(i, j). This value is adjusted according to the input loading and the accumulation of cells experienced in previous service cycles. This dissertation also explores an analysis technique based on feedback control theory. This methodology is proposed to study the stability of arbitration and matching schemes for packet switches. A continuous system is used and a control model is used to emulate a queuing system. The technique is applied to a matching scheme. In addition, the study shows that the dwell time, which is defined as the time a queue receives service in a service opportunity, is a factor that affects the stability of a queuing system. This feedback control model is an alternative approach to evaluate the stability of arbitration and matching schemes

    Design of a Hybrid Modular Switch

    Full text link
    Network Function Virtualization (NFV) shed new light for the design, deployment, and management of cloud networks. Many network functions such as firewalls, load balancers, and intrusion detection systems can be virtualized by servers. However, network operators often have to sacrifice programmability in order to achieve high throughput, especially at networks' edge where complex network functions are required. Here, we design, implement, and evaluate Hybrid Modular Switch (HyMoS). The hybrid hardware/software switch is designed to meet requirements for modern-day NFV applications in providing high-throughput, with a high degree of programmability. HyMoS utilizes P4-compatible Network Interface Cards (NICs), PCI Express interface and CPU to act as line cards, switch fabric, and fabric controller respectively. In our implementation of HyMos, PCI Express interface is turned into a non-blocking switch fabric with a throughput of hundreds of Gigabits per second. Compared to existing NFV infrastructure, HyMoS offers modularity in hardware and software as well as a higher degree of programmability by supporting a superset of P4 language
    • …
    corecore