13,428 research outputs found

    Array joint detection for C/TDMA systems in UMTS environments

    Get PDF
    Two array-based schemes for intracell and intercell interference suppression are proposed. In both cases, the spatial and temporal characteristics of the propagation are jointly exploited by placing a narrowband beamformer prior to the corresponding data detection stage. In the first approach, the filtered training sequence joint detection receiver (FTS-JDR), the beamformer is devoted to exclusively cancel out intercell interference. This way, intracell users can be jointly detected in a MMSE detection block. In contrast, the second algorithm, known as the filtered training sequence multisensor receiver (FTS-MR), aims to attenuate all the interferers in the beamforming stage which allows the user of interest to be detected following a MLSE strategy. In order to assess the performance of the proposed schemes, a set of link-level computer simulations adopting FRAMES' proposal for UMTS air-interface as well as realistic channel models for third generation communication systems is provided. Simulation results indicate that lower BERs can be obtained by concentrating interference cancellation tasks in the beamforming block.Peer ReviewedPostprint (published version

    Planning assistance for the NASA 30/20 GHz program. Network control architecture study.

    Get PDF
    Network Control Architecture for a 30/20 GHz flight experiment system operating in the Time Division Multiple Access (TDMA) was studied. Architecture development, identification of processing functions, and performance requirements for the Master Control Station (MCS), diversity trunking stations, and Customer Premises Service (CPS) stations are covered. Preliminary hardware and software processing requirements as well as budgetary cost estimates for the network control system are given. For the trunking system control, areas covered include on board SS-TDMA switch organization, frame structure, acquisition and synchronization, channel assignment, fade detection and adaptive power control, on board oscillator control, and terrestrial network timing. For the CPS control, they include on board processing and adaptive forward error correction control

    Ό\muNap: Practical Micro-Sleeps for 802.11 WLANs

    Get PDF
    In this paper, we revisit the idea of putting interfaces to sleep during 'packet overhearing' (i.e., when there are ongoing transmissions addressed to other stations) from a practical standpoint. To this aim, we perform a robust experimental characterisation of the timing and consumption behaviour of a commercial 802.11 card. We design Ό\muNap, a local standard-compliant energy-saving mechanism that leverages micro-sleep opportunities inherent to the CSMA operation of 802.11 WLANs. This mechanism is backwards compatible and incrementally deployable, and takes into account the timing limitations of existing hardware, as well as practical CSMA-related issues (e.g., capture effect). According to the performance assessment carried out through trace-based simulation, the use of our scheme would result in a 57% reduction in the time spent in overhearing, thus leading to an energy saving of 15.8% of the activity time.Comment: 15 pages, 12 figure

    Near-Instantaneously Adaptive HSDPA-Style OFDM Versus MC-CDMA Transceivers for WIFI, WIMAX, and Next-Generation Cellular Systems

    No full text
    Burts-by-burst (BbB) adaptive high-speed downlink packet access (HSDPA) style multicarrier systems are reviewed, identifying their most critical design aspects. These systems exhibit numerous attractive features, rendering them eminently eligible for employment in next-generation wireless systems. It is argued that BbB-adaptive or symbol-by-symbol adaptive orthogonal frequency division multiplex (OFDM) modems counteract the near instantaneous channel quality variations and hence attain an increased throughput or robustness in comparison to their fixed-mode counterparts. Although they act quite differently, various diversity techniques, such as Rake receivers and space-time block coding (STBC) are also capable of mitigating the channel quality variations in their effort to reduce the bit error ratio (BER), provided that the individual antenna elements experience independent fading. By contrast, in the presence of correlated fading imposed by shadowing or time-variant multiuser interference, the benefits of space-time coding erode and it is unrealistic to expect that a fixed-mode space-time coded system remains capable of maintaining a near-constant BER

    On-board processing concepts for future satellite communications systems

    Get PDF
    The initial definition of on-board processing for an advanced satellite communications system to service domestic markets in the 1990's is discussed. An exemplar system with both RF on-board switching and demodulation/remodulation baseband processing is used to identify important issues related to system implementation, cost, and technology development. Analyses of spectrum-efficient modulation, coding, and system control techniques are summarized. Implementations for an RF switch and baseband processor are described. Among the major conclusions listed is the need for high gain satellites capable of handling tens of simultaneous beams for the efficient reuse of the 2.5 GHz 30/20 frequency band. Several scanning beams are recommended in addition to the fixed beams. Low power solid state 20 GHz GaAs FET power amplifiers in the 5W range and a general purpose digital baseband processor with gigahertz logic speeds and megabits of memory are also recommended

    Energy-efficient wireless communication

    Get PDF
    In this chapter we present an energy-efficient highly adaptive network interface architecture and a novel data link layer protocol for wireless networks that provides Quality of Service (QoS) support for diverse traffic types. Due to the dynamic nature of wireless networks, adaptations in bandwidth scheduling and error control are necessary to achieve energy efficiency and an acceptable quality of service. In our approach we apply adaptability through all layers of the protocol stack, and provide feedback to the applications. In this way the applications can adapt the data streams, and the network protocols can adapt the communication parameters
    • 

    corecore