321 research outputs found

    Contributions to channel modelling and performance estimation of HAPS-based communication systems regarding IEEE Std 802.16TM

    Get PDF
    New and future telecommunication networks are and will be broadband type. The existing terrestrial and space radio communication infrastructures might be supplemented by new wireless networks that make and will make use of aeronautics-technology. Our study/contribution is referring to radio communications based on radio stations aboard a stratospheric platform named, by ITU-R, HAPS (High Altitude Platform Station). These new networks have been proposed as an alternative technology within the ITU framework to provide various narrow/broadband communication services. With the possibility of having a payload for Telecommunications in an aircraft or a balloon (HAPS), it can be carried out radio communications to provide backbone connections on ground and to access to broadband points for ground terminals. The latest implies a complex radio network planning. Therefore, the radio coverage analysis at outdoors and indoors becomes an important issue on the design of new radio systems. In this doctoral thesis, the contribution is related to the HAPS application for terrestrial fixed broadband communications. HAPS was hypothesised as a quasi-static platform with height above ground at the so-called stratospheric layer. Latter contribution was fulfilled by approaching via simulations the outdoor-indoor coverage with a simple efficient computational model at downlink mode. This work was assessing the ITU-R recommendations at bands recognised for the HAPS-based networks. It was contemplated the possibility of operating around 2 GHz (1820 MHz, specifically) because this band is recognised as an alternative for HAPS networks that can provide IMT-2000 and IMT-Advanced services. The global broadband radio communication model was composed of three parts: transmitter, channel, and receiver. The transmitter and receiver parts were based on the specifications of the IEEE Std 802.16TM-2009 (with its respective digital transmission techniques for a robust-reliable link), and the channel was subjected to the analysis of radio modelling at the level of HAPS and terrestrial (outdoors plus indoors) parts. For the channel modelling was used the two-state characterisation (physical situations associated with the transmitted/received signals), the state-oriented channel modelling. One of the channel-state contemplated the environmental transmission situation defined by a direct path between transmitter and receiver, and the remaining one regarded the conditions of shadowing. These states were dependent on the elevation angle related to the ray-tracing analysis: within the propagation environment, it was considered that a representative portion of the total energy of the signal was received by a direct or diffracted wave, and the remaining power signal was coming by a specular wave, to last-mentioned waves (rays) were added the scattered and random rays that constituted the diffuse wave. At indoors case, the variations of the transmitted signal were also considering the following matters additionally: the building penetration, construction material, angle of incidence, floor height, position of terminal in the room, and indoor fading; also, these indoors radiocommunications presented different type of paths to reach the receiver: obscured LOS, no LOS (NLOS), and hard NLOS. The evaluation of the feasible performance for the HAPS-to-ground terminal was accomplished by means of thorough simulations. The outcomes of the experiment were presented in terms of BER vs. Eb/N0 plotting, getting significant positive conclusions for these kind of system as access network technology based on HAPS

    A variable-rate modulation and coding scheme for low earth orbit satellites

    Get PDF
    Low Earth Orbit (LEO) satellites are increasingly being used for a wide variety of communications applications. These satellites have to operate in widely varying channel conditions. These conditions are often significantly better than the 'worst case' situations that are experienced and thus a single rate transmission scheme is clearly suboptimal. The objective of the thesis is to suggest and test a method of modulation/coding that can take advantage of better signal strength conditions in order to improve data transmission rates. In order to provide the goal of approximately 50kbps transmission in a 10kHz Frequency Division Multiple Access (FDMA) channel it was necessary to consider spectrally efficient, rather than power efficient, modulations. The proposed modulation scheme makes use of an eight-dimensional trellis coded modulation system. Multiple signal constellation sets are used in conjunction with this coding in order to provide different transmission rates, depending on the signal to noise ratio and the channel state. To enhance the suitability of the modulation scheme for the channel, it was combined with Reed-Solomon Coding and interleaving in an inner/outer code arrangement. Various means of determining when to switch between coding rates were discussed briefly, but an in-depth treatment of the subject fell outside of the scope of the thesis. Various combinations of these codes were tested in gaussian noise conditions and various degrees of Rician and Rayleigh fading. In order to make use of the higher rate QAM constellations, it was necessary to provide the decoder with channel state information. The tested system achieved its purpose of providing a variable rate coding scheme resulting in good performance over a range of channel conditions. It is fairly flexible and can be adapted to specific channel requirements

    Performance evaluation of FSO communication systems over weak atmospheric turbulence channel for eastern coast of South Africa.

    Get PDF
    Masters Degree. University of KwaZulu-Natal, Durban.Free space optical (FSO) communication, otherwise known as optical wireless communication (OWC), is an established line-of-sight telecommunication technique which utilises an optical signal carrier to propagate modulated signals in the form of a light wave (visible or infrared) over the atmospheric medium. It has numerous advantages, including ease of deployment, large bandwidth, cost effective, full duplex high data rate throughput, protocol independence, highly secured data rate transmission, unregulated frequency spectrum, limited electromagnetic interference, and minimum amount of power consumption. With all the inherent advantages in FSO systems, the technology is impaired by atmospheric turbulence. Atmospheric turbulence occurs due to the persistent random changes of the refractive index as a result of variations in atmospheric temperature and pressure. This results in fluctuations in the irradiance of the laser (simply referred to as scintillation), which may lead to attenuation of optical signals in the FSO communication system. Thus, atmospheric attenuation and turbulent conditions have negative effects on the performance and ease of deployment of FSO communication systems. In this dissertation, we examine the performance of FSO systems over weak atmospheric turbulence channel for the eastern coast of South Africa. We evaluate the feasibility of the FSO link and how to improve the reliability by estimating the link margin, probability of attenuation exceedance, power scintillation index, overall power loss due to attenuation and turbulence, link budget estimate for different link lengths and wavelengths. The FSO system availability estimated for the eastern coast of South Africa is above 99% for link distances ranging from 1 km-4 km at 850 nm, 950 nm and 1550 nm. It is also observed that the FSO link availability increases with corresponding increase in wavelengths. Adopting the Kim model to estimate the atmospheric attenuation at 850 nm wavelength, the attenuation due to scattering contributes 9.47% to the absolute atmospheric losses while the atmospheric turbulence loss contributes 90.53% to the overall power loss at a link range of 4 km. Using the Ferdinandov model for a link range of 4 km at 950 nm wavelength, the attenuation due to scattering contributes 8.81% to the total power loss while the atmospheric turbulence loss contributes 91.19% to the overall power loss. It is observed that the attainable link distance increases with increase in atmospheric visibility status. The FSO system availability reduces with increase in the propagation link distance. Furthermore, it is found that the fading loss from scintillation effects strongly depends on the power scintillation index. An increase in the power scintillation index, causes an increase in the fading loss. Thus, the power scintillation index also increases per unit increase in transmission link length and refractive index. The compensation margin for such atmospheric fading loss increases with decrease in accessible FSO system bound probability. Therefore, for a highly reliable FSO system link, extra margin must be incorporated to compensate for fading loss caused by scintillation

    WiMAX HAPS-based downlink performance employing geometrical and statistical propagation channel characteristics

    Get PDF
    The evolution to a well-expected technology in wireless-communications maturity is in progress. Complementary applications are being suggested for such purposes, which might be possibly effective from the already ongoing research on high-altitude-platform systems. Herein, we introduce a HAPS-based system for delivering broadband communications intended to be operational at L band. A physical-statistical channel model for the HAPSto-fixed-terrestrial terminal provision is derived from urban geometrical radio-coverage considerations with a simple diffraction theory. The stratospheric broadband channel model is fulfi lled with the two channel-state situations related to the direct and specular rays, plus multipath. The fi rst state consists of predicting the performance for which the line-of-sight path can exist between HAPS and the still terminal at street level. The second channel state refers to modeling the statistical fading characteristics for the shadowing condition. The system implementation is approximated and analyzed by performing intensive simulation-aided modeling. The proposed hypotheses use empirical data derived from land-mobile-satellite communication-system records. Because the systems require robust, reliable, and future standardization results, IEEE 802.16™-2004 PHYlayer technical specifi cations are used to accomplish the WiMAX HAPS-based downlink performance evaluation.Peer ReviewedPostprint (published version

    Hybrid Free-Space Optical and Visible Light Communication Link

    Get PDF
    V součastnosti bezdrátové optické komunikace (optical wireless communication, OWC) získávají širokou pozornost jako vhodný doplněk ke komunikačním přenosům v rádiovém pásmu. OWC nabízejí několik výhod včetně větší šířky přenosového pásma, neregulovaného frekvenčního pásma či odolnosti vůči elektromagnetickému rušení. Tato práce se zabývá návrhem OWC systémů pro připojení koncových uživatelů. Samotná realizace spojení může být provedena za pomoci různých variant bezdrátových technologií, například pomocí OWC, kombinací různých OWC technologií nebo hybridním rádio-optickým spojem. Za účelem propojení tzv. poslední míle je analyzován optický bezvláknový spoj (free space optics, FSO). Tato práce se dále zabývá analýzou přenosových vlastností celo-optického více skokového spoje s důrazem na vliv atmosférických podmínek. V dnešní době mnoho uživatelů tráví čas ve vnitřních prostorech kanceláří či doma, kde komunikace ve viditelném spektru (visible light communication, VLC) poskytuje lepší přenosové parametry pokrytí než úzce směrové FSO. V rámci této práce byla odvozena a experimentálně ověřena závislost pro bitovou chybovost přesměrovaného (relaying) spoje ve VLC. Pro propojení poskytovatele datavých služeb s koncovým uživatelem může být výhodné zkombinovat více přenosových technologií. Proto je navržen a analyzovám systém pro překonání tzv. problému poslední míle a posledního metru kombinující hybridní FSO a VLC technologie.The field of optical wireless communications (OWC) has recently attracted significant attention as a complementary technology to radio frequency (RF). OWC systems offer several advantages including higher bandwidth, an unregulated spectrum, resistance to electromagnetic interference and a high order of reusability. The thesis focuses on the deployment and analyses of end-user interconnections using the OWC systems. Interconnection can be established by many wireless technologies, for instance, by a single OWC technology, a combination of OWC technologies, or by hybrid OWC/RF links. In order to establish last mile outdoor interconnection, a free-space optical (FSO) has to be investigated. In this thesis, the performance of all-optical multi-hop scenarios is analyzed under atmospheric conditions. However, nowadays, many end users spend much time in indoor environments where visible light communication (VLC) technology can provide better transmission parameters and, significantly, better coverage. An analytical description of bit error rate for relaying VLC schemes is derived and experimentally verified. Nonetheless, for the last mile, interconnection of a provider and end users (joint outdoor and indoor connection) can be advantageous when combining multiple technologies. Therefore, a hybrid FSO/VLC system is proposed and analyzed for the interconnection of the last mile and last meter bottleneck

    On the Calculation of the Incomplete MGF with Applications to Wireless Communications

    Get PDF
    (c) 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works. DOI: 10.1109/TCOMM.2016.2626440The incomplete moment generating function (IMGF) has paramount relevance in communication theory, since it appears in a plethora of scenarios when analyzing the performance of communication systems. We here present a general method for calculating the IMGF of any arbitrary fading distribution. Then, we provide exact closed-form expressions for the IMGF of the very general κ-μ shadowed fading model, which includes the popular κ-μ, η-μ, Rician shadowed, and other classical models as particular cases. We illustrate the practical applicability of this result by analyzing several scenarios of interest in wireless communications: 1) physical layer security in the presence of an eavesdropper; 2) outage probability analysis with interference and background noise; 3) channel capacity with side information at the transmitter and the receiver; and 4) average bit-error rate with adaptive modulation, when the fading on the desired link can be modeled by any of the aforementioned distributions.Universidad de Málaga. Campus de Execelencia Internacional. Andalucía Tech
    corecore