20 research outputs found

    Optimizing artificial neural networks using LevyChaotic mapping on Wolf Pack optimization algorithm for detect driving sleepiness

    Get PDF
    Artificial Neural Networks (ANNs) are utilized to solve a variety of problems in many domains. In this type of network, training and selecting parameters that define networks architecture play an important role in enhancing the accuracy of the network's output; Therefore, Prior to training, those parameters must be optimized. Grey Wolf Optimizer (GWO) has been considered one of the efficient developed approaches in the Swarm Intelligence area that is used to solve real-world optimization problems. However, GWO still faces a problem of the slump in local optimums in some places due to insufficient diversity. This paper proposes a novel algorithm Levy Flight- Chaotic Chen mapping on Wolf Pack Algorithm in Neural Network. It efficiently exploits the search regions to detect driving sleepiness and balance the exploration and exploitation operators, which are considered implied features of any stochastic search algorithm. Due to the lack of dataset availability, a dataset of 15 participants has been collected from scratch to evaluate the proposed algorithm's performance. The results show that the proposed algorithm achieves an accuracy of 99.3%

    Spark plug failure detection using Z-freq and machine learning

    Get PDF
    Preprogrammed monitoring of engine failure due to spark plug misfire can be traced using a method called machine learning. Unluckily, a challenge to get a high-efficiency rate because of a massive volume of training data is required. During the study, these failure-generated were enhanced with a novel statistical signal-based analysis called Z-freq to improve the exploration. This study is an exploration of the time and frequency content attained from the engine after it goes under a specific situation. Throughout the trial, the misfire was formed by cutting the voltage supplied to simulate the actual outcome of the worn-out spark plug. The failure produced by fault signals from the spark plug misfire were collected using great sensitivity, space-saving and a robust piezo-based sensor named accelerometer. The achieved result and analysis indicated a significant pattern in the coefficient value and scattering of Z-freq data for spark plug misfire. Lastly, the simulation and experimental output were proved and endorsed in a series of performance metrics tests using accuracy, sensitivity, and specificity for prediction purposes. Finally, it confirmed that the proposed technique capably to make a diagnosis: fault detection, fault localization, and fault severity classification

    Electrohysterogram for ANN-Based Prediction of Imminent Labor in Women with Threatened Preterm Labor Undergoing Tocolytic Therapy

    Full text link
    [EN] Threatened preterm labor (TPL) is the most common cause of hospitalization in the second half of pregnancy and entails high costs for health systems. Currently, no reliable labor proximity prediction techniques are available for clinical use. Regular checks by uterine electrohysterogram (EHG) for predicting preterm labor have been widely studied. The aim of the present study was to assess the feasibility of predicting labor with a 7- and 14-day time horizon in TPL women, who may be under tocolytic treatment, using EHG and/or obstetric data. Based on 140 EHG recordings, artificial neural networks were used to develop prediction models. Non-linear EHG parameters were found to be more reliable than linear for differentiating labor in under and over 7/14 days. Using EHG and obstetric data, the <7- and <14-day labor prediction models achieved an AUC in the test group of 87.1 +/- 4.3% and 76.2 +/- 5.8%, respectively. These results suggest that EHG can be reliable for predicting imminent labor in TPL women, regardless of the tocolytic therapy stage. This paves the way for the development of diagnostic tools to help obstetricians make better decisions on treatments, hospital stays and admitting TPL women, and can therefore reduce costs and improve maternal and fetal wellbeing.This work was supported by the Spanish Ministry of Economy and Competitiveness, the European Regional Development Fund (MCIU/AEI/FEDER, UE RTI2018-094449-A-I00-AR) and by the Generalitat Valenciana (AICO/2019/220).Mas-Cabo, J.; Prats-Boluda, G.; Garcia-Casado, J.; Alberola Rubio, J.; Monfort-Ortiz, R.; Martinez-Saez, C.; Perales, A.... (2020). Electrohysterogram for ANN-Based Prediction of Imminent Labor in Women with Threatened Preterm Labor Undergoing Tocolytic Therapy. Sensors. 20(9):1-16. https://doi.org/10.3390/s20092681S116209Beck, S., Wojdyla, D., Say, L., Pilar Bertran, A., Meraldi, M., Harris Requejo, J., … Van Look, P. (2010). The worldwide incidence of preterm birth: a systematic review of maternal mortality and morbidity. Bulletin of the World Health Organization, 88(1), 31-38. doi:10.2471/blt.08.062554Zeitlin, J., Szamotulska, K., Drewniak, N., Mohangoo, A., Chalmers, J., … Sakkeus, L. (2013). Preterm birth time trends in Europe: a study of 19 countries. BJOG: An International Journal of Obstetrics & Gynaecology, 120(11), 1356-1365. doi:10.1111/1471-0528.12281Goldenberg, R. L., Culhane, J. F., Iams, J. D., & Romero, R. (2008). Epidemiology and causes of preterm birth. The Lancet, 371(9606), 75-84. doi:10.1016/s0140-6736(08)60074-4Petrou, S. (2005). The economic consequences of preterm birth duringthe first 10 years of life. BJOG: An International Journal of Obstetrics & Gynaecology, 112, 10-15. doi:10.1111/j.1471-0528.2005.00577.xLucovnik, M., Chambliss, L. R., & Garfield, R. E. (2013). Costs of unnecessary admissions and treatments for «threatened preterm labor». American Journal of Obstetrics and Gynecology, 209(3), 217.e1-217.e3. doi:10.1016/j.ajog.2013.06.046Haas, D., Benjamin, T., Sawyer, R., & Quinney, S. (2014). Short-term tocolytics for preterm delivery &ndash; current perspectives. International Journal of Women’s Health, 343. doi:10.2147/ijwh.s44048Euliano, T. Y., Nguyen, M. T., Darmanjian, S., McGorray, S. P., Euliano, N., Onkala, A., & Gregg, A. R. (2013). Monitoring uterine activity during labor: a comparison of 3 methods. American Journal of Obstetrics and Gynecology, 208(1), 66.e1-66.e6. doi:10.1016/j.ajog.2012.10.873Devedeux, D., Marque, C., Mansour, S., Germain, G., & Duchêne, J. (1993). Uterine electromyography: A critical review. American Journal of Obstetrics and Gynecology, 169(6), 1636-1653. doi:10.1016/0002-9378(93)90456-sChkeir, A., Fleury, M.-J., Karlsson, B., Hassan, M., & Marque, C. (2013). Patterns of electrical activity synchronization in the pregnant rat uterus. BioMedicine, 3(3), 140-144. doi:10.1016/j.biomed.2013.04.007Fele-Žorž, G., Kavšek, G., Novak-Antolič, Ž., & Jager, F. (2008). A comparison of various linear and non-linear signal processing techniques to separate uterine EMG records of term and pre-term delivery groups. Medical & Biological Engineering & Computing, 46(9), 911-922. doi:10.1007/s11517-008-0350-yHoroba, K., Jezewski, J., Matonia, A., Wrobel, J., Czabanski, R., & Jezewski, M. (2016). Early predicting a risk of preterm labour by analysis of antepartum electrohysterograhic signals. Biocybernetics and Biomedical Engineering, 36(4), 574-583. doi:10.1016/j.bbe.2016.06.004Vinken, M. P. G. C., Rabotti, C., Mischi, M., & Oei, S. G. (2009). Accuracy of Frequency-Related Parameters of the Electrohysterogram for Predicting Preterm Delivery. Obstetrical & Gynecological Survey, 64(8), 529-541. doi:10.1097/ogx.0b013e3181a8c6b1Vrhovec, J., Macek-Lebar, A., & Rudel, D. (s. f.). Evaluating Uterine Electrohysterogram with Entropy. IFMBE Proceedings, 144-147. doi:10.1007/978-3-540-73044-6_36Diab, A., Hassan, M., Marque, C., & Karlsson, B. (2014). Performance analysis of four nonlinearity analysis methods using a model with variable complexity and application to uterine EMG signals. Medical Engineering & Physics, 36(6), 761-767. doi:10.1016/j.medengphy.2014.01.009Lemancewicz, A., Borowska, M., Kuć, P., Jasińska, E., Laudański, P., Laudański, T., & Oczeretko, E. (2016). Early diagnosis of threatened premature labor by electrohysterographic recordings – The use of digital signal processing. Biocybernetics and Biomedical Engineering, 36(1), 302-307. doi:10.1016/j.bbe.2015.11.005Hassan, M., Terrien, J., Marque, C., & Karlsson, B. (2011). Comparison between approximate entropy, correntropy and time reversibility: Application to uterine electromyogram signals. Medical Engineering & Physics, 33(8), 980-986. doi:10.1016/j.medengphy.2011.03.010Fergus, P., Idowu, I., Hussain, A., & Dobbins, C. (2016). Advanced artificial neural network classification for detecting preterm births using EHG records. Neurocomputing, 188, 42-49. doi:10.1016/j.neucom.2015.01.107Acharya, U. R., Sudarshan, V. K., Rong, S. Q., Tan, Z., Lim, C. M., Koh, J. E., … Bhandary, S. V. (2017). Automated detection of premature delivery using empirical mode and wavelet packet decomposition techniques with uterine electromyogram signals. Computers in Biology and Medicine, 85, 33-42. doi:10.1016/j.compbiomed.2017.04.013Fergus, P., Cheung, P., Hussain, A., Al-Jumeily, D., Dobbins, C., & Iram, S. (2013). Prediction of Preterm Deliveries from EHG Signals Using Machine Learning. PLoS ONE, 8(10), e77154. doi:10.1371/journal.pone.0077154Ren, P., Yao, S., Li, J., Valdes-Sosa, P. A., & Kendrick, K. M. (2015). Improved Prediction of Preterm Delivery Using Empirical Mode Decomposition Analysis of Uterine Electromyography Signals. PLOS ONE, 10(7), e0132116. doi:10.1371/journal.pone.0132116Degbedzui, D. K., & Yüksel, M. E. (2020). Accurate diagnosis of term–preterm births by spectral analysis of electrohysterography signals. Computers in Biology and Medicine, 119, 103677. doi:10.1016/j.compbiomed.2020.103677Borowska, M., Brzozowska, E., Kuć, P., Oczeretko, E., Mosdorf, R., & Laudański, P. (2018). Identification of preterm birth based on RQA analysis of electrohysterograms. Computer Methods and Programs in Biomedicine, 153, 227-236. doi:10.1016/j.cmpb.2017.10.018Vinken, M. P. G. C., Rabotti, C., Mischi, M., van Laar, J. O. E. H., & Oei, S. G. (2010). Nifedipine-Induced Changes in the Electrohysterogram of Preterm Contractions: Feasibility in Clinical Practice. Obstetrics and Gynecology International, 2010, 1-8. doi:10.1155/2010/325635Mas-Cabo, J., Prats-Boluda, G., Perales, A., Garcia-Casado, J., Alberola-Rubio, J., & Ye-Lin, Y. (2018). Uterine electromyography for discrimination of labor imminence in women with threatened preterm labor under tocolytic treatment. Medical & Biological Engineering & Computing, 57(2), 401-411. doi:10.1007/s11517-018-1888-yBradley, A. P. (1997). The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognition, 30(7), 1145-1159. doi:10.1016/s0031-3203(96)00142-2Alexandersson, A., Steingrimsdottir, T., Terrien, J., Marque, C., & Karlsson, B. (2015). The Icelandic 16-electrode electrohysterogram database. Scientific Data, 2(1). doi:10.1038/sdata.2015.17Maner, W. (2003). Predicting term and preterm delivery with transabdominal uterine electromyography. Obstetrics & Gynecology, 101(6), 1254-1260. doi:10.1016/s0029-7844(03)00341-7Maner, W. L., & Garfield, R. E. (2007). Identification of Human Term and Preterm Labor using Artificial Neural Networks on Uterine Electromyography Data. Annals of Biomedical Engineering, 35(3), 465-473. doi:10.1007/s10439-006-9248-8Mas-Cabo, J., Prats-Boluda, G., Garcia-Casado, J., Alberola-Rubio, J., Perales, A., & Ye-Lin, Y. (2019). Design and Assessment of a Robust and Generalizable ANN-Based Classifier for the Prediction of Premature Birth by means of Multichannel Electrohysterographic Records. Journal of Sensors, 2019, 1-13. doi:10.1155/2019/5373810Terrien, J., Marque, C., & Karlsson, B. (2007). Spectral characterization of human EHG frequency components based on the extraction and reconstruction of the ridges in the scalogram. 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. doi:10.1109/iembs.2007.4352680Rooijakkers, M. J., Rabotti, C., Oei, S. G., Aarts, R. M., & Mischi, M. (2014). Low-complexity intrauterine pressure estimation using the Teager energy operator on electrohysterographic recordings. Physiological Measurement, 35(7), 1215-1228. doi:10.1088/0967-3334/35/7/1215Ahmed, M., Chanwimalueang, T., Thayyil, S., & Mandic, D. (2016). A Multivariate Multiscale Fuzzy Entropy Algorithm with Application to Uterine EMG Complexity Analysis. Entropy, 19(1), 2. doi:10.3390/e19010002Karmakar, C. K., Khandoker, A. H., Gubbi, J., & Palaniswami, M. (2009). Complex Correlation Measure: a novel descriptor for Poincaré plot. BioMedical Engineering OnLine, 8(1), 17. doi:10.1186/1475-925x-8-17Roy, B., & Ghatak, S. (2013). Nonlinear Methods to Assess Changes in Heart Rate Variability in Type 2 Diabetic Patients. Arquivos Brasileiros de Cardiologia. doi:10.5935/abc.20130181Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: Synthetic Minority Over-sampling Technique. Journal of Artificial Intelligence Research, 16, 321-357. doi:10.1613/jair.953Smrdel, A., & Jager, F. (2015). Separating sets of term and pre-term uterine EMG records. Physiological Measurement, 36(2), 341-355. doi:10.1088/0967-3334/36/2/341Kl. Comparison between Using Linear and Non-linear Features to Classify Uterine Electromyography Signals of Term and Preterm Deliveries. (2013). 2013 30th National Radio Science Conference (NRSC). doi:10.1109/nrsc.2013.6587953Aditya, S., & Tibarewala, D. N. (2012). Comparing ANN, LDA, QDA, KNN and SVM algorithms in classifying relaxed and stressful mental state from two-channel prefrontal EEG data. International Journal of Artificial Intelligence and Soft Computing, 3(2), 143. doi:10.1504/ijaisc.2012.049010Li, Q., Rajagopalan, C., & Clifford, G. D. (2014). A machine learning approach to multi-level ECG signal quality classification. Computer Methods and Programs in Biomedicine, 117(3), 435-447. doi:10.1016/j.cmpb.2014.09.002Li, Z., Zhang, Q., & Zhao, X. (2017). Performance analysis of K-nearest neighbor, support vector machine, and artificial neural network classifiers for driver drowsiness detection with different road geometries. International Journal of Distributed Sensor Networks, 13(9), 155014771773339. doi:10.1177/1550147717733391Murthy, H. S. N., & Meenakshi, D. M. (2015). ANN, SVM and KNN Classifiers for Prognosis of Cardiac Ischemia- A Comparison. Bonfring International Journal of Research in Communication Engineering, 5(2), 07-11. doi:10.9756/bijrce.8030Ren, J. (2012). ANN vs. SVM: Which one performs better in classification of MCCs in mammogram imaging. Knowledge-Based Systems, 26, 144-153. doi:10.1016/j.knosys.2011.07.016Zhang, G., Eddy Patuwo, B., & Y. Hu, M. (1998). Forecasting with artificial neural networks: International Journal of Forecasting, 14(1), 35-62. doi:10.1016/s0169-2070(97)00044-7Lawrence, S., & Giles, C. L. (2000). Overfitting and neural networks: conjugate gradient and backpropagation. Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium. doi:10.1109/ijcnn.2000.857823Diab, A., Hassan, M., Boudaoud, S., Marque, C., & Karlsson, B. (2013). Nonlinear estimation of coupling and directionality between signals: Application to uterine EMG propagation. 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). doi:10.1109/embc.2013.6610513Most, O., Langer, O., Kerner, R., Ben David, G., & Calderon, I. (2008). Can myometrial electrical activity identify patients in preterm labor? American Journal of Obstetrics and Gynecology, 199(4), 378.e1-378.e6. doi:10.1016/j.ajog.2008.08.003Mas-Cabo, J., Prats-Boluda, G., Ye-Lin, Y., Alberola-Rubio, J., Perales, A., & Garcia-Casado, J. (2019). Characterization of the effects of Atosiban on uterine electromyograms recorded in women with threatened preterm labor. Biomedical Signal Processing and Control, 52, 198-205. doi:10.1016/j.bspc.2019.04.001You, J., Kim, Y., Seok, W., Lee, S., Sim, D., Park, K. S., & Park, C. (2019). Multivariate Time–Frequency Analysis of Electrohysterogram for Classification of Term and Preterm Labor. Journal of Electrical Engineering & Technology, 14(2), 897-916. doi:10.1007/s42835-019-00118-9Schuit, E., Scheepers, H., Bloemenkamp, K., Bolte, A., Duvekot, H., … van Eyck, J. (2015). Predictive Factors for Delivery within 7 Days after Successful 48-Hour Treatment of Threatened Preterm Labor. American Journal of Perinatology Reports, 05(02), e141-e149. doi:10.1055/s-0035-1552930Liao, J. B., Buhimschi, C. S., & Norwitz, E. R. (2005). Normal Labor: Mechanism and Duration. Obstetrics and Gynecology Clinics of North America, 32(2), 145-164. doi:10.1016/j.ogc.2005.01.001Ye-Lin, Y., Garcia-Casado, J., Prats-Boluda, G., Alberola-Rubio, J., & Perales, A. (2014). Automatic Identification of Motion Artifacts in EHG Recording for Robust Analysis of Uterine Contractions. Computational and Mathematical Methods in Medicine, 2014, 1-11. doi:10.1155/2014/47078

    Road Performance Analysis (Case Study: Jl. Kakialy Ambon City)

    Get PDF
    The number of residents in Ambon City every year has increased, therefore the number of increases in vehicle volume is directly proportional to the number of population growth, and in line with the increasing problem of traffic congestion. One of the traffic jams that occur in Ambon City is on the Kakialy road, which is caused by side obstacles due to unattended vehicle parking on the road, especially during rush hour or peak hours (during school and after school or commuting and returning from work). The existence of community facilities such as shops, fast food areas, hotels, and residential areas is also one of the triggers for road body parking which causes congestion on the Kakialy road section. Therefore, this study was conducted to find out how the performance of the Kakialy road section during peak and normal hours. The method used is a descriptive survey that uses data collection techniques in the form of observation and documentation studies for the calculation of capacity and speed on urban roads using the Indonesian Road Capacity Manual (MKJI) method. The results of data analysis show that the capacity of peak hours at 12.00-13.00 WIT) is 18,721 junior high school/hour and normal hours at 16.00-17.00 WIT is 15,037.8 junior high school/hour, with a vehicle density value (DS) at peak hours of 0.59. The average side resistance data in peak hours has a weighted frequency of 366.6 SMP/hour so it belongs to the medium side resistance class (M), and the average side resistance in normal hours has a weighted frequency of 148.7 SMP/hour, including the low side resistance class (L). So that after going through the calculation analysis process, it is concluded that the vehicle density value (DS) at peak hours (12.00 – 13.00 WIT) is 0.59 and is categorized in Level Of Service (LOS) C which means medium performance. While the vehicle density value (DS) during normal hours (16.00 – 17.00 WIT) is 0.45 and is categorized in Level Of Service (LOS) B which means good performance

    Advances in Automated Driving Systems

    Get PDF
    Electrification, automation of vehicle control, digitalization and new mobility are the mega-trends in automotive engineering, and they are strongly connected. While many demonstrations for highly automated vehicles have been made worldwide, many challenges remain in bringing automated vehicles to the market for private and commercial use. The main challenges are as follows: reliable machine perception; accepted standards for vehicle-type approval and homologation; verification and validation of the functional safety, especially at SAE level 3+ systems; legal and ethical implications; acceptance of vehicle automation by occupants and society; interaction between automated and human-controlled vehicles in mixed traffic; human–machine interaction and usability; manipulation, misuse and cyber-security; the system costs of hard- and software and development efforts. This Special Issue was prepared in the years 2021 and 2022 and includes 15 papers with original research related to recent advances in the aforementioned challenges. The topics of this Special Issue cover: Machine perception for SAE L3+ driving automation; Trajectory planning and decision-making in complex traffic situations; X-by-Wire system components; Verification and validation of SAE L3+ systems; Misuse, manipulation and cybersecurity; Human–machine interactions, driver monitoring and driver-intention recognition; Road infrastructure measures for the introduction of SAE L3+ systems; Solutions for interactions between human- and machine-controlled vehicles in mixed traffic

    Seamless Interactions Between Humans and Mobility Systems

    Full text link
    As mobility systems, including vehicles and roadside infrastructure, enter a period of rapid and profound change, it is important to enhance interactions between people and mobility systems. Seamless human—mobility system interactions can promote widespread deployment of engaging applications, which are crucial for driving safety and efficiency. The ever-increasing penetration rate of ubiquitous computing devices, such as smartphones and wearable devices, can facilitate realization of this goal. Although researchers and developers have attempted to adapt ubiquitous sensors for mobility applications (e.g., navigation apps), these solutions often suffer from limited usability and can be risk-prone. The root causes of these limitations include the low sensing modality and limited computational power available in ubiquitous computing devices. We address these challenges by developing and demonstrating that novel sensing techniques and machine learning can be applied to extract essential, safety-critical information from drivers natural driving behavior, even actions as subtle as steering maneuvers (e.g., left-/righthand turns and lane changes). We first show how ubiquitous sensors can be used to detect steering maneuvers regardless of disturbances to sensing devices. Next, by focusing on turning maneuvers, we characterize drivers driving patterns using a quantifiable metric. Then, we demonstrate how microscopic analyses of crowdsourced ubiquitous sensory data can be used to infer critical macroscopic contextual information, such as risks present at road intersections. Finally, we use ubiquitous sensors to profile a driver’s behavioral patterns on a large scale; such sensors are found to be essential to the analysis and improvement of drivers driving behavior.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/163127/1/chendy_1.pd

    Advances in Computational Intelligence Applications in the Mining Industry

    Get PDF
    This book captures advancements in the applications of computational intelligence (artificial intelligence, machine learning, etc.) to problems in the mineral and mining industries. The papers present the state of the art in four broad categories: mine operations, mine planning, mine safety, and advances in the sciences, primarily in image processing applications. Authors in the book include both researchers and industry practitioners

    Socio-Cognitive and Affective Computing

    Get PDF
    Social cognition focuses on how people process, store, and apply information about other people and social situations. It focuses on the role that cognitive processes play in social interactions. On the other hand, the term cognitive computing is generally used to refer to new hardware and/or software that mimics the functioning of the human brain and helps to improve human decision-making. In this sense, it is a type of computing with the goal of discovering more accurate models of how the human brain/mind senses, reasons, and responds to stimuli. Socio-Cognitive Computing should be understood as a set of theoretical interdisciplinary frameworks, methodologies, methods and hardware/software tools to model how the human brain mediates social interactions. In addition, Affective Computing is the study and development of systems and devices that can recognize, interpret, process, and simulate human affects, a fundamental aspect of socio-cognitive neuroscience. It is an interdisciplinary field spanning computer science, electrical engineering, psychology, and cognitive science. Physiological Computing is a category of technology in which electrophysiological data recorded directly from human activity are used to interface with a computing device. This technology becomes even more relevant when computing can be integrated pervasively in everyday life environments. Thus, Socio-Cognitive and Affective Computing systems should be able to adapt their behavior according to the Physiological Computing paradigm. This book integrates proposals from researchers who use signals from the brain and/or body to infer people's intentions and psychological state in smart computing systems. The design of this kind of systems combines knowledge and methods of ubiquitous and pervasive computing, as well as physiological data measurement and processing, with those of socio-cognitive and affective computing
    corecore