49 research outputs found

    Performance Analysis of Priority-Based IEEE 802.15.6 Protocol in Saturated Traffic Conditions

    Get PDF
    Recent advancement in internet of medical things has enabled deployment of miniaturized, intelligent, and low-power medical devices in, on, or around a human body for unobtrusive and remote health monitoring. The IEEE 802.15.6 standard facilitates such monitoring by enabling low-power and reliable wireless communication between the medical devices. The IEEE 802.15.6 standard employs a carrier sense multiple access with collision avoidance protocol for resource allocation. It utilizes a priority-based backoff procedure by adjusting the contention window bounds of devices according to user requirements. As the performance of this protocol is considerably affected when the number of devices increases, we propose an accurate analytical model to estimate the saturation throughput, mean energy consumption, and mean delay over the number of devices. We assume an error-prone channel with saturated traffic conditions. We determine the optimal performance bounds for a fixed number of devices in different priority classes with different values of bit error ratio. We conclude that high-priority devices obtain quick and reliable access to the error-prone channel compared to low-priority devices. The proposed model is validated through extensive simulations. The performance bounds obtained in our analysis can be used to understand the tradeoffs between different priority levels and network performance.info:eu-repo/semantics/publishedVersio

    Human-Centric Wireless Communication Networks

    Get PDF
    This thesis covers two main topics: the design and performance evaluation of Wireless Body Area Networks (WBANs), and the simulation and mathematical modeling of Delay Tolerant Networks (DTNs). Different Medium Access Control (MAC) protocols for WBANs are implemented on dedicated hardware in order to evaluate, through extensive measurement campaigns, the performance of the network in terms of packet loss rate, delay and energy consumption. Novel solutions to cope with body shadowing and to improve the coexistence with other wireless technologies, are presented and evaluated. An analytic model for the CSMA/CA protocol defined in the IEEE 802.15.6 standard is also presented. The benefits of offloading part of the traffic carried by a wireless backbone to a DTN composed of mobile nodes in a urban environment, is also investigated. A more analytic approach, mainly using tools from stochastic geometry and Markov chains theory, is used to develop a mathematical framework for the evaluation of the performance of routing rules for DTNs

    Wearable Wireless Devices

    Get PDF
    No abstract available

    Wearable Wireless Devices

    Get PDF
    No abstract available

    Abstracting information on body area networks

    Get PDF
    Healthcare is changing, correction...healthcare is in need of change. The population ageing, the increase in chronic and heart diseases and just the increase in population size will overwhelm the current hospital-centric healthcare. There is a growing interest by individuals to monitor their own physiology. Not only for sport activities, but also to control their own diseases. They are changing from the passive healthcare receiver to a proactive self-healthcare taker. The focus is shifting from hospital centred treatment to a patient-centric healthcare monitoring. Continuous, everyday, wearable monitoring and actuating is part of this change. In this setting, sensors that monitor the heart, blood pressure, movement, brain activity, dopamine levels, and actuators that pump insulin, “pump” the heart, deliver drugs to specific organs, stimulate the brain are needed as pervasive components in and on the body. They will tend for people’s need of self-monitoring and facilitate healthcare delivery. These components around a human body that communicate to sense and act in a coordinated fashion make a Body Area Network (BAN). In most cases, and in our view, a central, more powerful component will act as the coordinator of this network. These networks aim to augment the power to monitor the human body and react to problems discovered with this observation. One key advantage of this system is their overarching view of the whole network. That is, the central component can have an understanding of all the monitored signals and correlate them to better evaluate and react to problems. This is the focus of our thesis. In this document we argue that this multi-parameter correlation of the heterogeneous sensed information is not being handled in BANs. The current view depends exclusively on the applica- tion that is using the network and its understanding of the parameters. This means that every application will oversee the BAN’s heterogeneous resources managing them directly without taking into consideration other applications, their needs and knowledge. There are several physiological correlations already known by the medical field. Correlating blood pressure and cross sectional area of blood vessels to calculate blood velocity, estimating oxygen delivery from cardiac output and oxygen saturation, are such examples. This knowledge should be available in a BAN and shared by the several applications that make use of the network. This architecture implies a central component that manages the knowledge and the resources. And this is, in our view, missing in BANs. Our proposal is a middleware layer that abstracts the underlying BAN’s resources to the applica- tion, providing instead an information model to be queried. The model describes the correlations for producing new information that the middleware knows about. Naturally, the raw sensed data is also part of the model. The middleware hides the specificities of the nodes that constitute the BAN, by making available their sensed production. Applications are able to query for information attaching requirements to these requests. The middleware is then responsible for satisfying the requests while optimising the resource usage of the BAN. Our architecture proposal is divided in two corresponding layers, one that abstracts the nodes’ hardware (hiding node’s particularities) and the information layer that describes information available and how it is correlated. A prototype implementation of the architecture was done to illustrate the concept.This work was partially supported by PhD scholarship SFRH/BD/28843/2006 from Fundação da Ciência e Tecnologia from Portugal

    A reliable trust-aware reinforcement learning based routing protocol for wireless medical sensor networks.

    Get PDF
    Interest in the Wireless Medical Sensor Network (WMSN) is rapidly gaining attention thanks to recent advances in semiconductors and wireless communication. However, by virtue of the sensitive medical applications and the stringent resource constraints, there is a need to develop a routing protocol to fulfill WMSN requirements in terms of delivery reliability, attack resiliency, computational overhead and energy efficiency. This doctoral research therefore aims to advance the state of the art in routing by proposing a lightweight, reliable routing protocol for WMSN. Ensuring a reliable path between the source and the destination requires making trustaware routing decisions to avoid untrustworthy paths. A lightweight and effective Trust Management System (TMS) has been developed to evaluate the trust relationship between the sensor nodes with a view to differentiating between trustworthy nodes and untrustworthy ones. Moreover, a resource-conservative Reinforcement Learning (RL) model has been proposed to reduce the computational overhead, along with two updating methods to speed up the algorithm convergence. The reward function is re-defined as a punishment, combining the proposed trust management system to defend against well-known dropping attacks. Furthermore, with a view to addressing the inborn overestimation problem in Q-learning-based routing protocols, we adopted double Q-learning to overcome the positive bias of using a single estimator. An energy model is integrated with the reward function to enhance the network lifetime and balance energy consumption across the network. The proposed energy model uses only local information to avoid the resource burdens and the security concerns of exchanging energy information. Finally, a realistic trust management testbed has been developed to overcome the limitations of using numerical analysis to evaluate proposed trust management schemes, particularly in the context of WMSN. The proposed testbed has been developed as an additional module to the NS-3 simulator to fulfill usability, generalisability, flexibility, scalability and high-performance requirements

    QoS in Body Area Networks: A survey

    Get PDF

    A MAC protocol for quality of service provisioning in adaptive biomedical wireless sensor networks

    Get PDF
    Doctorate program on Electronics and Computer EngineeringNew healthcare solutions are being explored to improve the quality of care and the quality of life of patients, as well as the sustainability and efficiency of the healthcare services. In this context, wireless sensor networks (WSNs) constitute a key technology for closing the loop between patients and healthcare providers, as WSNs provide sensing ability, as well as mobility and portability, essential characteristics for wide acceptance of wireless healthcare technology. Despite the recent advances in the field, the wide adoption of healthcare WSNs is still conditioned by quality of service (QoS) issues, namely at the medium access control (MAC) level. MAC protocols currently available for WSNs are not able to provide the required QoS to healthcare applications in scenarios of medical emergency or intensive medical care. To cover this shortage, the present work introduces a MAC protocol with novel concepts to assure the required QoS regarding the data transmission robustness, packet delivery deadline, bandwidth efficiency, and energy preservation. The proposed MAC protocol provides a new and efficient dynamic reconfiguration mechanism, so that relevant operational parameters may be redefined dynamically in accordance with the patients’ clinical state. The protocol also provides a channel switching mechanism and the capacity of forwarding frames in two-tier network structures. To test the performance of the proposed MAC protocol and compare it with other MAC protocols, a simulation platform was implemented. In order to validate the simulation results, a physical testbed was implemented to replicate the tests and verify the results. Sensor nodes were specifically designed and assembled to implement this physical testbed. New healthcare solutions are being explored to improve the quality of care and the quality of life of patients, as well as the sustainability and efficiency of the healthcare services. In this context, wireless sensor networks (WSNs) constitute a key technology for closing the loop between patients and healthcare providers, as WSNs provide sensing ability, as well as mobility and portability, essential characteristics for wide acceptance of wireless healthcare technology. Despite the recent advances in the field, the wide adoption of healthcare WSNs is still conditioned by quality of service (QoS) issues, namely at the medium access control (MAC) level. MAC protocols currently available for WSNs are not able to provide the required QoS to healthcare applications in scenarios of medical emergency or intensive medical care. To cover this shortage, the present work introduces a MAC protocol with novel concepts to assure the required QoS regarding the data transmission robustness, packet delivery deadline, bandwidth efficiency, and energy preservation. The proposed MAC protocol provides a new and efficient dynamic reconfiguration mechanism, so that relevant operational parameters may be redefined dynamically in accordance with the patients’ clinical state. The protocol also provides a channel switching mechanism and the capacity of forwarding frames in two-tier network structures. To test the performance of the proposed MAC protocol and compare it with other MAC protocols, a simulation platform was implemented. In order to validate the simulation results, a physical testbed was implemented to replicate the tests and verify the results. Sensor nodes were specifically designed and assembled to implement this physical testbed. Preliminary tests using the simulation and physical platforms showed that simulation results diverge significantly from reality, if the performance of the WSN software components is not considered. Therefore, a parametric model was developed to reflect the impact of this aspect on a physical WSN. Simulation tests using the parametric model revealed that the results match satisfactorily those obtained in reality. After validating the simulation platform, comparative tests against IEEE 802.15.4, a prominent standard used in many wireless healthcare systems, showed that the proposed MAC protocol leads to a performance increase regarding diverse QoS metrics, such as packet loss and bandwidth efficiency, as well as scalability, adaptability, and power consumption. In this way, AR-MAC is a valuable contribution to the deployment of wireless e-health technology and related applications.Novas soluções de cuidados de saúde estão a ser exploradas para melhorar a qualidade de tratamento e a qualidade de vida dos pacientes, assim como a sustentabilidade e eficiência dos serviços de cuidado de saúde. Neste contexto, as redes de sensores sem fios (wireless sensor networks - WSN) são uma tecnologia chave para fecharem o ciclo entre os pacientes e os prestadores de cuidados de saúde, uma vez que as WSNs proporcionam não só capacidade sensorial mas também mobilidade e portabilidade, caracteristicas essenciais para a aceitação à larga escala da tecnologia dos cuidados de saúde sem fios. Apesar dos avanços recentes na área, a aceitação genérica das WSNs de cuidados de saúde ainda está condicionada por aspectos relacionados com a qualidade de serviço (quality of service - QoS), nomeadamente ao nível do controlo de acesso ao meio (medium access control - MAC). Os protocolos MAC actualmente disponíveis para WSNs são incapazes de fornecer a QoS desejada pelas aplicações médicas em cenários de emergência ou cuidados médicos intensivos. Para suprimir esta carência, o presente trabalho apresenta um protocolo MAC com novos conceitos a fim de assegurar a QoS respeitante à robustez de transmissão de dados, ao limite temporal da entrega de pacotes, à utilização da largura de banda e à preservação da energia eléctrica. O protocolo MAC proposto dispõe de um novo e eficiente mecanismo de reconfiguração para que os parâmetros operacionais relevantes possam ser redefinidos dinamicamente de acordo com o estado de saúde do paciente. O protocolo também oferece um mecanismo autónomo de comutação de canal, bem como a capacidade de encaminhar pacotes em redes de duas camadas. Para testar o desempenho do protocolo MAC proposto e compará-lo com outros protocolos MAC foi implementada uma plataforma de simulação. A fim de validar os resultados da simulação foi também implementada uma plataforma física para permitir replicar os testes e verificar os resultados. Esta plataforma física inclui nós sensoriais concebidos e construídos de raiz para o efeito. Testes preliminares usando as plataformas de simulação e física mostraram que os resultados de simulação divergem significativamente da realidade, caso o desempenho dos componentes do software presentes nos componentes da WSN não seja considerado. Por conseguinte, desenvolveu-se um modelo paramétrico para reflectir o impacto deste aspecto numa WSN real. Testes de simulação efectuados com o modelo paramétrico apresentaram resultados muito satisfatórios quando comparados com os obtidos na realidade. Uma vez validada a plataforma de simulação, efectuaram-se testes comparativos com a norma IEEE 802.15.4, proeminentemente usada em projectos académicos de cuidados de saúde sem fios. Os resultados mostraram que o protocolo MAC conduz a um desempenho superior no tocante a diversas métricas QoS, tais como perdas de pacotes e utilização de largura de banda, bem como no respeitante à escalabilidade, adaptabilidade e consumo de energia eléctrica. Assim sendo, o protocolo MAC proposto representa um valioso contributo para a concretização efectiva dos cuidados de saúde sem fios e suas aplicações
    corecore