178 research outputs found

    Performance analysis of Ethernet Powerlink protocol: Application to a new lift system generation

    No full text
    International audienceTo ensure control, present lifts use the Controller Area Network (CAN) bus for transmitting commands between components. Although it is largely adopted in the industrial process, CAN is not able to guarantee a sufficient throughput to transmit multimedia data or to meet the requirements of some safety standards. In this paper, we present a transition case from electrical/electromechanical components to a networked control system. The main element we focus on in the lift system is the safety chain. We propose to build the lift communication system around real-time Ethernet for more efficiency, smartness and safety. Furthermore, the use of the openSAFETY protocol as a safety layer over the real-time Ethernet allows the achievement of the required Safety Integrity Level (SIL). This adopted solution should meet the adopted standard IEC 61508 requirements

    Analysis of Ethernet Powerlink network and development of a wireless extension based on the IEEE 802.11n WLAN

    Get PDF
    In questa tesi si analizza inizialmente Ethernet POWERLINK (EPL), una delle reti Ethernet Real-Time più popolari grazie alle sue caratteristiche e prestazioni. Viene poi proposta l'estensione wireless della rete POWERLINK basata sulla rete IEEE 802.11n (WLAN), con quest'ultima opportunamente ottimizzata per la comunicazione industriale attraverso l'algoritmo di dynamic rate adaptation RSIN

    Movement Detection with Event-Based Cameras: Comparison with Frame-Based Cameras in Robot Object Tracking Using Powerlink Communication

    Get PDF
    Event-based cameras are not common in industrial applications despite the fact that they can add multiple advantages for applications with moving objects. In comparison with frame-based cameras, the amount of generated data is very low while keeping the main information in the scene. For an industrial environment with interconnected systems, data reduction becomes very important to avoid network congestion and provide faster response time. However, the use of new sensors as event-based cameras is not common since they do not usually provide connectivity to industrial buses. This work develops a network node based on a Field Programmable Gate Array (FPGA), including data acquisition and tracking position for an event-based camera. It also includes spurious reduction and filtering algorithms while keeping the main features at the scene. The FPGA node also includes the stack of the network protocol to provide standard communication among other nodes. The powerlink IEEE 61158 industrial network is used to communicate the FPGA with a controller connected to a self-developed two-axis servo-controlled robot. The inverse kinematics model for the robot is included in the controller. To complete the system and provide a comparison, a traditional frame-based camera is also connected to the controller. Response time and robustness to lighting conditions are tested. Results show that, using the event-based camera, the robot can follow the object using fast image recognition achieving up to 85% percent data reduction providing an average of 99 ms faster position detection and less dispersion in position detection (4.96 mm vs. 17.74 mm in the Y-axis position, and 2.18 mm vs. 8.26 mm in the X-axis position) than the frame-based camera, showing that event-based cameras are more stable under light changes. Additionally, event-based cameras offer intrinsic advantages due to the low computational complexity required: small size, low power, reduced data and low cost. Thus, it is demonstrated how the development of new equipment and algorithms can be efficiently integrated into an industrial system, merging commercial industrial equipment with new devices

    New lift safety architecture to meet PESSRAL requirements

    No full text
    ISBN : 978-1-4799-8171-7International audienceAs part of new lift control generation, we will analyze a transition case from an electrical/electro-mechanical components to a networked control system. The main element we focus on in the lift system is the safety chain. This paper will describe the analysis of dependability requirements (IEC 61508) for the next electronic lift control

    Industrial networks and IIoT: Now and future trends

    Get PDF
    Connectivity is the one word summary for Industry 4.0 revolution. The importance of Internet of Things (IoT) and Industrial IoT (IIoT) have been increased dramatically with the rise of industrialization and industry 4.0. As new opportunities bring their own challenges, with the massive interconnected devices of the IIoT, cyber security of those networks and privacy of their users have become an important aspect. Specifically, intrusion detection for industrial networks (IIoT) has great importance. For instance, it is a key factor in improving the safe operation of the smart grid systems yet protecting the privacy of the consumers at the same time. In the same manner, data streaming is a valid option when the analysis is to be pushed from the cloud to the fog for industrial networks to provide agile response, since it brings the advantage of fast action on intrusion detection and also can buy time for intrusion mitigation. In order to dive deep in industrial networks, basic ground needs to be settled. Hence, this chapter serves in this manner, by presenting basic and emerging technologies along with ideas and discussions: First, an introduction of semiconductor evolution is provided along with the up-to-date hi-tech wired/wireless communication solutions for industrial networks. This is followed by a thorough representation of future trends in industrial environments. More importantly, enabling technologies for industrial networks is also presented. Finally, the chapter is concluded with a summary of the presentations along with future projections of IIoT networks

    Performance analysis of a Master/Slave switched Ethernet for military embedded applications

    Get PDF
    Current military communication network is a generation old and is no longer effective in meeting the emerging requirements imposed by the next generation military embedded applications. A new communication network based upon Full Duplex Switched Ethernet is proposed in this paper to overcome these limitations. To allow existing military subsystems to be easily supported by a Switched Ethernet network, our proposal consists in keeping their current centralized communication scheme by using an optimized master/slave transmission control on Switched Ethernet thanks to the Flexible Time Triggered (FTT) paradigm. Our main objective is to assess the performance of such a proposal and estimate the quality of service we can expect in terms of latency. Using the Network Calculus formalism, schedulability analysis are determined. These analysis are illustrated in the case of a realistic military embedded application extracted from a real military aircraft network, to highlight the proposal's ability to support the required time constrained communications

    Design of a New High Bandwidth Network for Agricultural Machines

    Get PDF
    Ethernet is by now the most adopted bus for fast digital communications in many environments, from household entertainment to PLC robotics in industrial assembly lines. Even in automotive industry, the interest in this technology is increasingly growing, pushed forward by research and by the need of high throughput that high dynamics distributed control demands. Although 100base-TX physical layer (PHY) does not seem to meet EMC requirements for vehicular and heavy-duty environments, OPEN Alliance BroadR Reach (soon becoming IEEE standard as IEEE 802.3bw) technology is the most promising and already adopted Ethernet-compatible PHY, reaching 100Mbps over an unshielded twisted pair. An agricultural machine is usually a system including tractor and one or more implements attached to it, to the back or to the front. Nowadays, a specific CAN-based distributed control network support treatments and applications, namely ISOBUS, defined by ISO 11783. This work deals with architectural and technological aspects of advanced Ethernet networks in order to provide a high-throughput deterministic network for in-vehicle distributed control for agricultural machinery. Two main paths of investigation will be presented: one concerning the prioritization of standard Ethernet taking advantage of standard ways of prioritization in well-established technologies; the other changing the channel access method of Ethernet using an industrial fieldbus, chosen after careful investigation. The prioritization of standard Ethernet is performed at two, non-mutual exclusive layers of the ISO OSI stack: one at L3, using the diffserv (former TOS) Ip field; one at L2, using the priorities defined in IEEE 802.1p, used in IEEE 802.1q (VLAN). These choices have several implications in the specific field of application of the agricultural machines. The change of the access method, instead, focused on the adoption of a specific fieldbus, in order to grant deterministic access to the medium and reliability of communications for safety-relevant applications. After a survey, that will be reported, the Powerlink fieldbus was chosen and some modifications will be discussed in order to suit the scope of the research

    FTT-Ethernet: A Flexible Real-Time Communication Protocol that Supports Dynamic QoS Management on Ethernet-based Systems

    Get PDF
    Ethernet was not originally developed to meet the requirements of real-time industrial automation systems and it was commonly considered unsuited for applications at the field level. Hence, several techniques were developed to make this protocol exhibit real-time behavior, some of them requiring specialized hardware, others providing soft-real-time guarantees only, or others achieving hard real-time guarantees with different levels of bandwidth efficiency. More recently, there has been an effort to support quality-of-service (QoS) negotiation and enforcement but there is not yet an Ethernet-based data link protocol capable of providing dynamic QoS management to further exploit the variable requirements of dynamic applications. This paper presents the FTT-Ethernet protocol, which efficiently supports hard-real-time operation in a flexible way, seamlessly over shared or switched Ethernet. The FTT-Ethernet protocol employs an efficient master/multislave transmission control technique and combines online scheduling with online admission control, to guarantee continued real-time operation under dynamic communication requirements, together with data structures and mechanisms that are tailored to support dynamic QoS management. The paper includes a sample application, aiming at the management of video streams, which highlights the protocol’s ability to support dynamic QoS management with real-time guarantees
    corecore