9,629 research outputs found

    Timing synchronization for cooperative wireless communications

    No full text
    In this work the effect of perfect and imperfect synchronization on the performance of single-link and cooperative communication is investigated. A feedforward non- data-aided near maximum likelihood (NDA-NML) timing estimator which is effective for an additive white Gaussian noise (AWGN) channel and also for a flat-fading channel, is developed. The Cramer Rao bound (CRB) and modified Cramer Rao bound (MCRB) for the estimator for a single-link transmission over an AWGN channel is derived. A closed form expression for the probability distribution of the timing estimator is also derived. The bit-error-rate (BER) degradation of the NDA-NML timing estimator with raised cosine pulse shaping for static timing errors over an AWGN channel is characterized. A closed form expression is derived for the conditional bit error probability (BEP) with static timing errors of binary phase shift keying modulation over a Rayleigh fading channel using rectangular pulse shaping. The NDA-NML timing estimator is applied to a cooperative communication system with a source, a relay and a destination. A CRB for the estimator for asymptotically low signal-to-noise-ratio case is derived. The timing complexity of the NDA-NML estimator is derived and compared with a feedforward correlation based data-aided maximum likelihood (DA-ML) estimator. The BER performance of this system operating with a detect-and-forward relaying is studied, where the symbol timings are estimated independently for each channel. A feedforward data and channel aided maximum likelihood (DCA-ML) symbol timing estimator for cooperative communication operating over flat fading channels is then developed. For more severe fading the DCA-ML estimator performs better than the NDA- NML estimator and the DA-ML estimator. The performance gains of the DCA-ML estimator over that of the DA-ML estimator become more significant in cooperative transmission than in single-link node-to-node transmission. The NDA-NML symbol timing estimator is applied to three-node cooperative communication in fast flat-fading conditions with various signal constellations. It is found that timing errors have significant effect on performance in fast flat-fading channels. The lower complexity NDA-NML estimator performs well for larger signal constellations in fast fading, when compared to DA-ML estimator. The application of cooperative techniques for saving transmit power is discussed along with the related performance analysis with timing synchronization errors. It is found that power allocations at the source and relay nodes for transmissions, and the related timing errors at the relay and the destination nodes, have considerable effect on the BER performance for power constrained cooperative communication. The performance of multi-node multi-relay decode-and-forward cooperative com- munication system, of various architectures, operating under different fading con- ditions, with timing synchronization and various combining methods, is presented. Switch-and-stay combining and switch-and-examine combining are proposed for multi-node cooperative communication. Apart from the proposed two combining methods equal gain combining, maximal ratio combining and selection combining are also used. It is demonstrated that synchronization error has significant effect on performance in cooperative communication with a range of system architectures, and it is also demonstrated that performance degradation due to synchronization error increases with increasing diversity. It is demonstrated that decode-and- forward relaying strategy with timing synchronization, using a very simple coding scheme, performs better than detect-and-forward relaying with timing synchronization. Analytical expressions are derived for BEP with static and dynamic timing synchronization errors over Rayleigh fading channels using rectangular pulse shaping for amplify-and-forward and detect-and-forward cooperative communications. Moment generating function (MGF) based approach is utilized to find the analytical expressions. It is found that timing synchronization errors have an antagonistic effect on the BEP performance of cooperative communication. With the relay intelligence of knowing whether symbols are detected correctly or not, detect- and-forward cooperative communication performs better than the low complexity amplify-and-forward cooperative communication

    Performance Analysis, Resource Allocation and Optimization of Cooperative Communication Systems under Generalized Fading Channels

    Get PDF
    The increasing demands for high-speed data transmission, efficient wireless access, high quality of service (QoS) and reliable network coverage with reduced power consumption impose demanding intensive research efforts on the design of novel wireless communication system architectures. A notable development in the area of communication theory is the introduction of cooperative communication systems. These technologies become promising solution for the next-generation wireless transmission systems due to their applicability in size, power, hardware and price constrained devices, such as cellular mobile devices, wireless sensors, ad-hoc networks and military communications, being able to provide, e.g., diversity gain against fading channels without the need for installing multiple antennas in a single terminal. The performance of the cooperative systems can in general be significantly increased by allocating the limited power efficiently. In this thesis, we address in detail the performance analysis, resource allocation and optimization of such cooperative communication systems under generalized fading channels. We focus first on energy-efficiency (EE) optimization and optimal power allocation (OPA) of regenerative cooperative network with spatial correlation effects under given power constraint and QoS requirement. The thesis also investigates the end-to-end performance and power allocation of a regenerative multi-relay cooperative network over non-homogeneous scattering environment, which is realistic case in practical wireless communication scenarios. Furthermore, the study investigates the end-to-end performance, OPA and energy optimization analysis under total power constraint and performance requirement of full-duplex (FD) relaying transmission scheme over asymmetric generalized fading models with relay self-interference (SI) effects.The study first focuses on exact error analysis and EE optimization of regenerative relay systems under spatial correlation effects. It first derives novel exact and asymptotic expressions for the symbol-error-rates (SERs) of M -ary quadrature amplitude and M -ary phase-shift keying (M -QAM) and (M -PSK) modulations, respectively, assuming a dual-hop decode-and-forward relay system, spatial correlation, path-loss effects and maximum-ratio-combing (MRC) at the destination. Based on this, EEoptimization and OPA are carried out under certain QoS requirement and transmit power constraints.Furthermore, the second part of the study investigates the end-to-end performance and power allocation of MRC based regenerative multi-relay cooperative system over non-homogeneous scattering environment. Novel exact and asymptotic expressions are derived for the end-to-end average SER for M -QAM and M -PSK modulations.The offered results are employed in performance investigations and power allocation formulations under total transmit power constraints.Finally, the thesis investigates outage performance, OPA and energy optimization analysis under certain system constraints for the FD and half-duplex (HD) relaying systems. Unlike the previous studies that considered the scenario of information transmission over symmetric fading conditions, in this study we considered the scenario of information transmission over the most generalized asymmetric fading environments.The obtained results indicate that depending on the severity of multipath fading, the spatial correlation between the direct and relayed paths and the relay location, the direct transmission is more energy-efficient only for rather short transmission distances and until a certain threshold. Beyond this, the system benefits substantially from the cooperative transmission approach where the cooperation gain increases as the transmission distance increases. Furthermore, the investigations on the power allocation for the multi-relay system over the generalized small-scale fading model show that substantial performance gain can be achieved by the proposed power allocation scheme over the conventional equal power allocation (EPA) scheme when the source-relay and relay-destination paths are highly unbalanced. Extensive studies on the FD relay system also show that OPA provides significant performance gain over the EPA scheme when the relay SI level is relatively strong. In addition, it is shown that the FD relaying scheme is more energy-efficient than the reference HD relaying scheme at long transmission distances and for moderate relay SI levels.In general, the investigations in this thesis provide tools, results and useful insights for implementing space-efficient, low-cost and energy-efficient cooperative networks, specifically, towards the future green communication era where the optimization of the scarce resources is critical

    Cooperative Symbol-Based Signaling for Networks with Multiple Relays

    Get PDF
    Wireless channels suffer from severe inherent impairments and hence reliable and high data rate wireless transmission is particularly challenging to achieve. Fortunately, using multiple antennae improves performance in wireless transmission by providing space diversity, spatial multiplexing, and power gains. However, in wireless ad-hoc networks multiple antennae may not be acceptable due to limitations in size, cost, and hardware complexity. As a result, cooperative relaying strategies have attracted considerable attention because of their abilities to take advantage of multi-antenna by using multiple single-antenna relays. This study is to explore cooperative signaling for different relay networks, such as multi-hop relay networks formed by multiple single-antenna relays and multi-stage relay networks formed by multiple relaying stages with each stage holding several single-antenna relays. The main contribution of this study is the development of a new relaying scheme for networks using symbol-level modulation, such as binary phase shift keying (BPSK) and quadrature phase shift keying (QPSK). We also analyze effects of this newly developed scheme when it is used with space-time coding in a multi-stage relay network. Simulation results demonstrate that the new scheme outperforms previously proposed schemes: amplify-and-forward (AF) scheme and decode-and-forward (DF) scheme

    Principles of Physical Layer Security in Multiuser Wireless Networks: A Survey

    Full text link
    This paper provides a comprehensive review of the domain of physical layer security in multiuser wireless networks. The essential premise of physical-layer security is to enable the exchange of confidential messages over a wireless medium in the presence of unauthorized eavesdroppers without relying on higher-layer encryption. This can be achieved primarily in two ways: without the need for a secret key by intelligently designing transmit coding strategies, or by exploiting the wireless communication medium to develop secret keys over public channels. The survey begins with an overview of the foundations dating back to the pioneering work of Shannon and Wyner on information-theoretic security. We then describe the evolution of secure transmission strategies from point-to-point channels to multiple-antenna systems, followed by generalizations to multiuser broadcast, multiple-access, interference, and relay networks. Secret-key generation and establishment protocols based on physical layer mechanisms are subsequently covered. Approaches for secrecy based on channel coding design are then examined, along with a description of inter-disciplinary approaches based on game theory and stochastic geometry. The associated problem of physical-layer message authentication is also introduced briefly. The survey concludes with observations on potential research directions in this area.Comment: 23 pages, 10 figures, 303 refs. arXiv admin note: text overlap with arXiv:1303.1609 by other authors. IEEE Communications Surveys and Tutorials, 201
    corecore