3,034 research outputs found

    Characterizing Power Consumption of Dual-Frequency GNSS of a Smartphone

    Full text link
    Location service is one of the most widely used features on a smartphone. More and more apps are built based on location services. As such, demand for accurate positioning is ever higher. Mobile brand Xiaomi has introduced Mi 8, the world's first smartphone equipped with a dual-frequency GNSS chipset which is claimed to provide up to decimeter-level positioning accuracy. Such unprecedentedly high location accuracy brought excitement to industry and academia for navigation research and development of emerging apps. On the other hand, there is a significant knowledge gap on the energy efficiency of smartphones equipped with a dual-frequency GNSS chipset. In this paper, we bridge this knowledge gap by performing an empirical study on power consumption of a dual-frequency GNSS phone. To the best our knowledge, this is the first experimental study that characterizes the power consumption of a smartphone equipped with a dual-frequency GNSS chipset and compares the energy efficiency with a single-frequency GNSS phone. We demonstrate that a smartphone with a dual-frequency GNSS chipset consumes 37% more power on average outdoors, and 28% more power indoors, in comparison with a singe-frequency GNSS phone.Comment: Published in IEEE Global Communications Conference (GLOBECOM

    Discrete Multitone Modulation for Maximizing Transmission Rate in Step-Index Plastic Optical Fibres

    Get PDF
    The use of standard 1-mm core-diameter step-index plastic optical fiber (SI-POF) has so far been mainly limited to distances of up to 100 m and bit-rates in the order of 100 Mbit/s. By use of digital signal processing, transmission performance of such optical links can be improved. Among the different technical solutions proposed, a promising one is based on the use of discrete multitone (DMT) modulation, directly applied to intensity-modulated, direct detection (IM/DD) SI-POF links. This paper presents an overview of DMT over SI-POF and demonstrates how DMT can be used to improve transmission rate in such IM/DD systems. The achievable capacity of an SI-POF channel is first analyzed theoretically and then validated by experimental results. Additionally, first experimental demonstrations of a real-time DMT over SI-POF system are presented and discusse

    Surface MIMO: Using Conductive Surfaces For MIMO Between Small Devices

    Full text link
    As connected devices continue to decrease in size, we explore the idea of leveraging everyday surfaces such as tabletops and walls to augment the wireless capabilities of devices. Specifically, we introduce Surface MIMO, a technique that enables MIMO communication between small devices via surfaces coated with conductive paint or covered with conductive cloth. These surfaces act as an additional spatial path that enables MIMO capabilities without increasing the physical size of the devices themselves. We provide an extensive characterization of these surfaces that reveal their effect on the propagation of EM waves. Our evaluation shows that we can enable additional spatial streams using the conductive surface and achieve average throughput gains of 2.6-3x for small devices. Finally, we also leverage the wideband characteristics of these conductive surfaces to demonstrate the first Gbps surface communication system that can directly transfer bits through the surface at up to 1.3 Gbps.Comment: MobiCom '1

    FLAMINGO – Fulfilling enhanced location accuracy in the mass-market through initial GalileO services

    Get PDF
    This paper discusses FLAMINGO, an initiative that will provide a high accuracy positioning service to be used by mass market applications. The status and future for the initiative are discussed, the required accuracies and other location parameters are described, and the target applications are identified. Finally, the currently achieved accuracies from today’s Smartphones are assessed and presented. FLAMINGO (Fulfilling enhanced Location Accuracy in the Mass-market through Initial GalileO services), part funded through the European GNSS Agency, is a collaborative venture comprising NSL (as lead organization), Telespazio France, University of Nottingham, Rokubun, Thales Alenia Space France, VVA, BQ, ECLEXYS and Blue Dot Solutions. The initiative is developing the infrastructure, solutions and services to enable the use of accurate and precise GNSS within the mass-market, thereby operating predominantly in an urban environment. Whilst mass-market receivers are yet to achieve accuracies below one metre for standard positioning, the introduction of Android raw GNSS measurements and the Broadcom dual frequency chipset (BCM47755), has presented the devices such an opportunity. FLAMINGO will enable and demonstrate the future of high accuracy positioning and navigation information on mass-market devices such as smartphones and Internet of Things (IoT) devices by producing a service delivering accuracies of 50cm (at 95%) and better, employing multi-constellation, PPP and RTK mechanisms, power consumption optimisation techniques. Whereas the Galileo High Accuracy Service targets 10cm precision within professional markets, FLAMINGO targets 30-50cm precision in the mass-market consumer markets. By targeting accuracies of a few decimetres, a range of improved and new applications in diverse market sectors are introduced. These sectors include, but are not limited to, mapping and GIS, autonomous vehicles, AR environments, mobile-location based gaming and people tracking. To obtain such high accuracies with mass market devices, FLAMINGO must overcome several challenges which are technical, operational and environmental. This includes the hardware capabilities of most mass-market devices, where components such as antennas and processors are prioritised for other purposes. We demonstrate that, despite these challenges, FLAMINGO has the potential to meet the accuracy required. Tests with the current Smartphones that provide access to multi-constellation raw measurements (the dual frequency Xiaomi Mi 8 and single frequency Samsung S8 and Huawei P10) demonstrate significant improvements to the PVT solution when processing using both RTK and PPP techniques

    InternalBlue - Bluetooth Binary Patching and Experimentation Framework

    Full text link
    Bluetooth is one of the most established technologies for short range digital wireless data transmission. With the advent of wearables and the Internet of Things (IoT), Bluetooth has again gained importance, which makes security research and protocol optimizations imperative. Surprisingly, there is a lack of openly available tools and experimental platforms to scrutinize Bluetooth. In particular, system aspects and close to hardware protocol layers are mostly uncovered. We reverse engineer multiple Broadcom Bluetooth chipsets that are widespread in off-the-shelf devices. Thus, we offer deep insights into the internal architecture of a popular commercial family of Bluetooth controllers used in smartphones, wearables, and IoT platforms. Reverse engineered functions can then be altered with our InternalBlue Python framework---outperforming evaluation kits, which are limited to documented and vendor-defined functions. The modified Bluetooth stack remains fully functional and high-performance. Hence, it provides a portable low-cost research platform. InternalBlue is a versatile framework and we demonstrate its abilities by implementing tests and demos for known Bluetooth vulnerabilities. Moreover, we discover a novel critical security issue affecting a large selection of Broadcom chipsets that allows executing code within the attacked Bluetooth firmware. We further show how to use our framework to fix bugs in chipsets out of vendor support and how to add new security features to Bluetooth firmware

    ESTABLISHED WAYS TO ATTACK EVEN THE BEST ENCRYPTION ALGORITHM

    Get PDF
    Which solution is the best – public key or private key encryption? This question cannot have a very rigorous, logical and definitive answer, so that the matter be forever settled :). The question supposes that the two methods could be compared on completely the same indicators – well, from my point of view, the comparison is not very relevant. Encryption specialists have demonstrated that the sizes of public key encrypted messages are much bigger than the encrypted message using private key algorithms. From this point of view, we can say that private key algorithms are more efficient than their newer counterparts. Looking at the issue through the eyeglass of the security level, the public key encryption have a great advantage of the private key variants, their level of protection, in the most pessimistic scenarios, being at least 35 time higher. As a general rule, each type of algorithm has managed to find its own market niche where could be applicable as a best solution and be more efficient than the other encryption model.Encryption, decryption, key, cryptanalysis, brute-force, linear, differential, algebra

    Mass-Market Receiver for Static Positioning: Tests and Statistical Analyses

    Get PDF
    Nowadays, there are several low cost GPS receivers able to provide both pseudorange and carrier phase measurements in the L1band, that allow to have good realtime performances in outdoor condition. The present paper describes a set of dedicated tests in order to evaluate the positioning accuracy in static conditions. The quality of the pseudorange and the carrier phase measurements let hope for interesting results. The use of such kind of receiver could be extended to a large number of professional applications, like engineering fields: survey, georeferencing, monitoring, cadastral mapping and cadastral road. In this work, the receivers performance is verified considering a single frequency solution trying to fix the phase ambiguity, when possible. Different solutions are defined: code, float and fix solutions. In order to solve the phase ambiguities different methods are considered. Each test performed is statistically analyzed, highlighting the effects of different factors on precision and accurac
    • …
    corecore