313 research outputs found

    Development and Evaluation of a Multistatic Ultrawideband Random Noise Radar

    Get PDF
    This research studies the AFIT noise network (NoNET) radar node design and the feasibility in processing the bistatic channel information of a cluster of widely distributed noise radar nodes. A system characterization is used to predict theoretical localization performance metrics. Design and integration of a distributed and central signal and data processing architecture enables the Matlab®-driven signal data acquisition, digital processing and multi-sensor image fusion. Experimental evaluation of the monostatic localization performance reveals its range measurement error standard deviation is 4.8 cm with a range resolution of 87.2(±5.9) cm. The 16-channel multistatic solution results in a 2-dimensional localization error of 7.7(±3.1) cm and a comparative analysis is performed against the netted monostatic solution. Results show that active sensing with a low probability of intercept (LPI) multistatic radar, like the NoNET, is capable of producing sub-meter accuracy and near meter-resolution imagery

    Target motion estimation via a multistatic FSR

    Get PDF
    The focus of this paper is on the estimation of the kinematic parameters of moving targets via a MIMO Forward Scatter Radar (FSR) system. A sub-optimum estimation technique is considered that exploits the information concerning the time instants at which the target crosses the individual baselines to retrieve the motion parameters. The accuracy of such technique is firstly investigated from a theoretical point of view and then the effectiveness of the proposed approach is demonstrated by applying it to live MIMO FSR data. Shown results prove the practical applicability of the proposed technique

    Target localization based on bistatic T/R pair selection in GNSS-based multistatic radar system

    Get PDF
    To cope with the increasingly complex electromagnetic environment, multistatic radar systems, especially the passive multistatic radar, are becoming a trend of future radar development due to their advantages in anti-electronic jam, anti-destruction properties, and no electromagnetic pollution. However, one problem with this multi-source network is that it brings a huge amount of information and leads to considerable computational load. Aiming at the problem, this paper introduces the idea of selecting external illuminators in the multistatic passive radar system. Its essence is to optimize the configuration of multistatic T/R pairs. Based on this, this paper respectively proposes two multi-source optimization algorithms from the perspective of resolution unit and resolution capability, the Covariance Matrix Fusion Method and Convex Hull Optimization Method, and then uses a Global Navigation Satellite System (GNSS) as an external illuminator to verify the algorithms. The experimental results show that the two optimization methods significantly improve the accuracy of multistatic positioning, and obtain a more reasonable use of system resources. To evaluate the algorithm performance under large number of transmitting/receiving stations, further simulation was conducted, in which a combination of the two algorithms were applied and the combined algorithm has shown its effectiveness in minimize the computational load and retain the target localization precision at the same time

    Doppler-only Multistatic Radar

    Get PDF
    In order to estimate the position and velocity of a target, most multistatic radar systems require multiple independent target measurements, such as angle-of-arrival, time-of-arrival, and Doppler information. Though inexpensive and reliable, Doppler-only systems have not been widely implemented due to the inherent nonlinear problem of determining a target’s position and velocity from their measurements. We solve this problem. In particular, we first establish the lack of observability in the Doppler-only bistatic system, thereby demonstrating the need for multiple transmitters and/or receivers. Next, for a multistatic system with a sufficient number of transmitter-receiver pairs, we invoke classical optimization techniques, such as gradient-descent and Newton’s method, to quickly and reliably find a numerical solution to the system of nonlinear Doppler equations. Finally, we indicate a best design for the transmitter-receiver constellation to be employed in the aforementioned optimization
    • …
    corecore