79,224 research outputs found

    Software dependability modeling using an industry-standard architecture description language

    Full text link
    Performing dependability evaluation along with other analyses at architectural level allows both making architectural tradeoffs and predicting the effects of architectural decisions on the dependability of an application. This paper gives guidelines for building architectural dependability models for software systems using the AADL (Architecture Analysis and Design Language). It presents reusable modeling patterns for fault-tolerant applications and shows how the presented patterns can be used in the context of a subsystem of a real-life application

    Software Architecture Risk Containers

    Get PDF
    Our motivation is to determine whether risks such as im- plementation error-proneness can be isolated into three types of con- tainers at design time. This paper identifies several container candidates in other research that fit the risk container concept. Two industrial case studies were used to determine which of three container types tested is most effective at isolating and predicting at design time the risk of im- plementation error-proneness. We found that Design Rule Containers were more effective than Use Case and Resource Containers

    Cross-layer system reliability assessment framework for hardware faults

    Get PDF
    System reliability estimation during early design phases facilitates informed decisions for the integration of effective protection mechanisms against different classes of hardware faults. When not all system abstraction layers (technology, circuit, microarchitecture, software) are factored in such an estimation model, the delivered reliability reports must be excessively pessimistic and thus lead to unacceptably expensive, over-designed systems. We propose a scalable, cross-layer methodology and supporting suite of tools for accurate but fast estimations of computing systems reliability. The backbone of the methodology is a component-based Bayesian model, which effectively calculates system reliability based on the masking probabilities of individual hardware and software components considering their complex interactions. Our detailed experimental evaluation for different technologies, microarchitectures, and benchmarks demonstrates that the proposed model delivers very accurate reliability estimations (FIT rates) compared to statistically significant but slow fault injection campaigns at the microarchitecture level.Peer ReviewedPostprint (author's final draft

    Uptake of BIM and IPD within the UK AEC Industry: the evolving role of the architectural technologist

    Get PDF
    Building Information Modelling is not only a tool, but also the process of creation, maintenance, distribution and co-ordination of an integrated database that collaboratively stores 2D and 3D information, with embedded physical and functional data within a project-building model. The uptake of BIM within the UK Architecture, Engineering and Construction (AEC) industry has been slow since the 1980’s, but over recent years, adoptions have increased. The increased collaborative nature of BIM, external data sharing techniques and progressively complex building design, promotes requirements for design teams to coordinate and communicate more effectively to achieve project goals. To manage this collaboration, new or evolved job roles may emerge. This research examined the current use of BIM, Integrated Project Delivery (IPD) and collaborative working in the UK AEC industry and job roles that have evolved or been created to cater for them. Using semi-structured interviews the interviewees indicated while several of the key enablers of IPD were being used, IPD itself had not been fully adopted. BIM was being used with some success but improvements could be made. New job roles such as the BIM Engineer and BIM Coordinator had been seen in the industry and evidence that the Architectural Technologist (AT) role is evolving into a more multidisciplinary role; this reflects similar findings of recent research

    Model-based dependability analysis : state-of-the-art, challenges and future outlook

    Get PDF
    Abstract: Over the past two decades, the study of model-based dependability analysis has gathered significant research interest. Different approaches have been developed to automate and address various limitations of classical dependability techniques to contend with the increasing complexity and challenges of modern safety-critical system. Two leading paradigms have emerged, one which constructs predictive system failure models from component failure models compositionally using the topology of the system. The other utilizes design models - typically state automata - to explore system behaviour through fault injection. This paper reviews a number of prominent techniques under these two paradigms, and provides an insight into their working mechanism, applicability, strengths and challenges, as well as recent developments within these fields. We also discuss the emerging trends on integrated approaches and advanced analysis capabilities. Lastly, we outline the future outlook for model-based dependability analysis
    • …
    corecore